We report on the characteristics of near-band-edge (NBE) emission and deep-level band from ZnO/Al2O3 and ZnO/ZnO core-shell nanorod arrays (NRAs). Vertically aligned ZnO NRAs were synthesized by an aqueous chemical method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition technique. Photoluminescence measurements revealed that the deep-level band was suppressed and the NBE emission was significantly enhanced after the deposition of Al2O3 and ZnO shells, which are attributed to the decrease in oxygen interstitials at the surface and the reduction in surface band bending of ZnO core, respectively. The shift of deep-level emissions from the ZnO/ZnO core-shell NRAs was observed for the first time. Owing to the presence of the ZnO shell layer, the yellow band associated with the oxygen interstitials inside the ZnO core would be prevailed over by the green luminescence, which originates from the recombination of the electrons in the conduction band with the holes trapped by the oxygen vacancies in the ZnO shell.PACS 68.65.Ac; 71.35.-y; 78.45.+h; 78.55.-m; 78.55.Et; 78.67.Hc; 81.16.Be; 85.60.Jb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212092PMC
http://dx.doi.org/10.1186/1556-276X-6-556DOI Listing

Publication Analysis

Top Keywords

al2o3 zno
12
zno shell
12
zno
9
characteristics near-band-edge
8
deep-level emissions
8
nanorod arrays
8
shell layers
8
nbe emission
8
deep-level band
8
zno/zno core-shell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!