After traumatic brain injury, a cascade of metabolic changes promotes the development of secondary brain damage. In this study, we examined metabolic changes in rats in the acute stage after trauma. Furthermore, we investigated the effect of a very early decompression craniotomy on intracranial pressure (ICP) and on metabolic parameters. For this study, a moderate controlled cortical impact injury (CCII) on rats was performed. The observation time was 180 minutes after trauma. ICP was measured continuously and microdialysate samples were collected every 30 minutes from the peri-contusional region. As representative metabolic parameters, glutamate, lactate, lactate/pyruvate ratio (L/P ratio), and glucose concentrations were measured. Compared to sham-operated animals, a significant, sustained decrease in glucose concentration and increase in L/P ratio occurred immediately after CCII. Additionally, delayed increase in lactate and glutamate concentrations occurred 60 minutes after trauma. After this initial peak, glutamate concentrations declined continuously via the observation time and reached levels comparable to sham-operated animals. In our model, thus we could detect a very early deterioration of glucose utilization and energy supply after trauma that recovered, due to the moderate intensity of the trauma, within 60 minutes without leading to ischemia in the peri-contusional region. Following decompression craniotomy, the increase of intracranial pressure could be reduced significantly. Any significant beneficial effects on metabolic changes, however, could not be proven in this very early stage after moderate CCII.

Download full-text PDF

Source
http://dx.doi.org/10.1179/1743132811Y.0000000017DOI Listing

Publication Analysis

Top Keywords

decompression craniotomy
12
metabolic changes
12
early decompression
8
controlled cortical
8
cortical impact
8
impact injury
8
intracranial pressure
8
metabolic parameters
8
observation time
8
minutes trauma
8

Similar Publications

Traumatic Brain Injury (TBI) is a major cause of death, disability, and healthcare expenses worldwide. Decompressive craniectomy (DC) is a critical surgery used when there is uncontrollable swelling in the brain following a TBI. Research has shown that 27.

View Article and Find Full Text PDF

A 21-year-old woman presented with progressive proptosis of the right eye with blurring of vision for the past 6 months. MRI showed an intra-orbital lesion that was T1 isointense, T2 hyperintense, and well enhancing on contrast. The patient underwent right frontal craniotomy, superior orbitotomy, and decompression of the lesion.

View Article and Find Full Text PDF

The most common treatment method for patients with acute ischemic stroke with large vessel occlusion is mechanical thrombectomy. However, complications such as cerebral edema and hemorrhage transformation after MT can affect patient prognoses, while decompression craniectomy considerably improves patient prognoses. The aim of this study was to identify clinical indicators, such as the neutrophil/high-density lipoprotein cholesterol ratio, to predict DC.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is considered a major cause of death globally, resulting from trauma. Decompressive craniectomy (DC) may improve functional outcomes in patients with TBI and its associated complications. This study was designed to determine safety and efficacy of DC in improving clinical outcomes in TBI patients compared to standard therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!