The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1369-1600.2011.00404.xDOI Listing

Publication Analysis

Top Keywords

cocaine-induced reinstatement
20
cocaine priming
20
f344 rats
16
gaba levels
16
accumbal glutamate
12
glutamate gaba
12
rats self-administered
12
self-administered cocaine
12
glutamate
10
cocaine
10

Similar Publications

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

Targeting Neuroplasticity in Substance Use Disorders: Implications for Therapeutics.

Annu Rev Pharmacol Toxicol

January 2025

Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; email:

The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models.

View Article and Find Full Text PDF

Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain. Electronic address:

Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory.

View Article and Find Full Text PDF

VTA glutamatergic projections to the nucleus accumbens suppress psychostimulant-seeking behavior.

Neuropsychopharmacology

November 2024

Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.

Converging evidence indicates that both dopamine and glutamate neurotransmission within the nucleus accumbens (NAc) play a role in psychostimulant self-administration and relapse in rodent models. Increased NAc dopamine release from ventral tegmental area (VTA) inputs is critical to psychostimulant self-administration and NAc glutamate release from prelimbic prefrontal cortex (PFC) inputs synapsing on medium spiny neurons (MSNs) is critical to reinstatement of psychostimulant-seeking after extinction. The regulation of the activity of MSNs by VTA dopamine inputs has been extensively studied, and recent findings have demonstrated that VTA glutamate neurons target the NAc medial shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!