With automated image analysis tools entering rapidly the clinical practice, the demands regarding reliability, accuracy, and speed are strongly increasing. Systematic testing approaches to determine optimal parameter settings and to select algorithm design variants become essential in this context. We present an approach to optimize organ localization in a complex segmentation chain consisting of organ localization, parametric organ model adaptation, and deformable adaptation. In particular, we consider the Generalized Hough Transformation (GHT) and 3D heart segmentation in Computed Tomography Angiography (CTA) images. We rate the performance of our GHT variant by the initialization error and by computation time. Systematic parameter testing on a compute cluster allows to identify a parametrization with a good tradeoff between reliability and speed. This is achieved with coarse image sampling, a coarse Hough space resolution and a filtering step that we introduced to remove unspecific edges. Finally we show that optimization of the GHT parametrization results in a segmentation chain with reduced failure rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-642-23626-6_57 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!