Robust and fast contrast inflow detection for 2D X-ray fluoroscopy.

Med Image Comput Comput Assist Interv

Siemens Corporation, Corporate Research, 755 College Road East, Princeton, NJ, USA.

Published: November 2011

2D X-ray fluoroscopy is widely used in computer assisted and image guided interventions because of the real time visual guidance it can provide to the physicians. During cardiac interventions, acquisitions of angiography are often used to assist the physician in visualizing the blood vessel structures, guide wires, or catheters, localizing bifurcations, estimating severity of a lesion, or observing the blood flow. Computational algorithms often need to process differently to frames with or without contrast medium. In order to automate this process and streamline the clinical workflow, a fully automatic contrast inflow detection algorithm is proposed. The robustness of the algorithm is validated by more than 1300 real fluoroscopic scenes. The algorithm is computationally efficient; a sequence with 100 frames can be processed within a second.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-23623-5_31DOI Listing

Publication Analysis

Top Keywords

contrast inflow
8
inflow detection
8
x-ray fluoroscopy
8
robust fast
4
fast contrast
4
detection x-ray
4
fluoroscopy x-ray
4
fluoroscopy computer
4
computer assisted
4
assisted image
4

Similar Publications

Groundwater-Driven Evolution of Prebiotic Alkaline Lake Environments.

Life (Basel)

December 2024

Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada.

Alkaline lakes are thought to have facilitated prebiotic synthesis reactions on the early Earth because their modern analogs accumulate vital chemical feedstocks such as phosphate through the evaporation of dilute groundwaters. Yet, the conditions required for some building block synthesis reactions are distinct from others, and these conditions are generally incompatible with those permissible for nascent cellular function. However, because current scenarios for prebiotic synthesis have not taken account of the physical processes that drive the chemical evolution of alkaline lakes, the potential for the co-occurrence of both prebiotic synthesis and the origins and early evolution of life in prebiotic alkaline lake environments remains poorly constrained.

View Article and Find Full Text PDF

Introduction: Mucinous Cystadenocarcinoma (MCA) of the breast remains a relatively rare condition, and to date, there is no systematic summary of its imaging manifestations. Therefore, this report presents a detailed account of the diagnosis and treatment of mucinous cystadenocarcinoma in a 40-year-old woman, with a particular focus on imaging findings. Additionally, we conducted a comprehensive literature review on this disease and summarized its key imaging features.

View Article and Find Full Text PDF

Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.

View Article and Find Full Text PDF

Cardiac and respiratory activities induce temporal changes in cerebral blood volume, balanced by a mirror CSF volume displacement in the spinal canal.

Neuroimage

December 2024

Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France; CHIMERE UR 7516, University of Picardie Jules Verne, Amiens, France. Electronic address:

Understanding cerebrospinal fluid (CSF) dynamics is crucial for elucidating the pathogenesis and diagnosis of neurodegenerative diseases. The primary mechanisms driving CSF oscillations remain a topic of debate. This study investigates whether cerebral blood volume displacement (CBV), modulated by breathing and cardiac activity, is the predominant drivers of CSF oscillations.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!