Papuamides E and F, Cytotoxic Depsipeptides from the Marine Sponge Melophlus sp.

Tetrahedron

Institute of Applied Science, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji Islands.

Published: November 2011

Two known papuamides C (1) and D (2) together with two new depsipeptides, papuamides E (3) and F (4), were isolated from an undescribed sponge of the genus Melophlus collected in the Solomon Islands. The planar structures of the compounds were elucidated on the basis of spectroscopic studies. Papuamides C-F (1-4) showed cytotoxicity against brine shrimp with LD(50) values between 92 and 106 μg/mL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192506PMC
http://dx.doi.org/10.1016/j.tet.2011.08.100DOI Listing

Publication Analysis

Top Keywords

papuamides
4
papuamides cytotoxic
4
cytotoxic depsipeptides
4
depsipeptides marine
4
marine sponge
4
sponge melophlus
4
melophlus papuamides
4
papuamides depsipeptides
4
depsipeptides papuamides
4
papuamides isolated
4

Similar Publications

Marine environments harbor a wealth of bioactive peptides with potential anticancer properties, sourced from diverse organisms like tunicates, sea sponges, and mollusks. Through isolation, identification, and modification, peptides such as Stylisin and Papuamides have shown enhanced activity and progressed to clinical trials, underscoring their therapeutic promise. Enzymatic hydrolysis emerges as a favored method for peptide extraction from marine proteins, with sponges identified as particularly rich sources.

View Article and Find Full Text PDF

In this paper, we explore marine bioactive peptides with anticancer potential sourced from various marine organisms, including tunicates, sea sponges, and mollusks. Peptides like Stylisin and Papuamides have been isolated, identified, and modified to enhance their activity, with many advancing to clinical trials due to their diverse biological activities, promising prospects in medicine. Enzymatic hydrolysis is a favored method for extracting peptides from marine proteins, particularly from sponges known for their rich bioactive compounds.

View Article and Find Full Text PDF

Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions.

View Article and Find Full Text PDF

Calculation of the Global and Local Conceptual DFT Indices for the Prediction of the Chemical Reactivity Properties of Papuamides A-F Marine Drugs.

Molecules

September 2019

Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico.

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions.

View Article and Find Full Text PDF

Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!