The seemingly inherent deficiencies of integral imaging systems-in particular, the depth of field limitation-are, in this Letter, partly resolved by using an irregular lens array, where each lens is either rotated or displaced from its original position in the conventional flat lens array. It is shown that having an array of lenses in the integral imaging system has some sort of redundancy that could be exploited to improve the quality of the image formation. The needed rotation or displacement of constituent lenses in the array is found by using a meticulous optimization algorithm, which tries to evenly distribute the optical rays emanating from each of the lenses to form the final image.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.003993DOI Listing

Publication Analysis

Top Keywords

integral imaging
12
lens array
8
optimization lens-array
4
lens-array structure
4
structure performance
4
performance improvement
4
improvement integral
4
imaging seemingly
4
seemingly inherent
4
inherent deficiencies
4

Similar Publications

The sarcoma ring trial: a case-based analysis of inter-center agreement across 21 German-speaking sarcoma centers.

J Cancer Res Clin Oncol

January 2025

Sarcoma Unit, Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Purpose: The management of soft tissue sarcoma (STS) at reference centers with specialized multidisciplinary tumor boards (MTB) improves patient survival. The German Cancer Society (DKG) certifies sarcoma centers in German-speaking countries, promoting high standards of care. This study investigated the variability in treatment recommendations for localized STS across different German-speaking tertiary sarcoma centers.

View Article and Find Full Text PDF

Purpose: During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.

Methods: X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Aerial images can cover a wide area and capture rich scene information. These images are often taken from a high altitude and contain many small objects. It is difficult to detect small objects accurately because their features are not obvious and are susceptible to background interference.

View Article and Find Full Text PDF

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!