In spite of the fact that solutions to Maxwell's equations in stratified isotropic optical media are well known, it appears that an explicit expression of the Poynting vector flux spatial evolution inside such a medium has not been derived so far. Based on exact electromagnetic field solutions in the transfer-matrix formalism, I derive such an expression and show that, due to the presence of counterpropagating waves in the medium, an additional contribution to the flux appears that exists only in optically absorbing layers and arises from the interference between these waves. Based on this theory, the concept of incremental absorption is introduced for the calculation of the light absorption profile along the stratification direction. As an illustration of this concept, absorption profiles in a Si-based thin-film tandem solar cell are predicted at typical wavelengths.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.003960DOI Listing

Publication Analysis

Top Keywords

poynting vector
8
transfer-matrix formalism
8
calculation light
8
light absorption
8
absorption profile
8
stratified isotropic
8
isotropic optical
8
optical media
8
vector transfer-matrix
4
formalism calculation
4

Similar Publications

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

We demonstrate analytically and numerically that the reverse energy flow is able to appear around the optical axis in the focal region of tightly focused hybrid vector beams. Theoretically, we derive and obtain the general expression of the longitudinal component of the Poynting vector in the focal plane for hybrid vector beams having circular polarization mapping tracks on the Poincaré sphere under xy basis vectors. Following from the obtained expression and the numerical simulation results, the on-axis and near-axis reverse energy flow behaviors are proved.

View Article and Find Full Text PDF

In this paper, the circular Bessel Gaussian beams (CBGBs) carrying power-cotangent-phase vortices are firstly introduced, whose propagation dynamics are explored theoretically and experimentally. The number of spiral lobes, rotation direction, rotation angle, and shape of the new type of beam can be flexibly modulated by controlling multiple parameters of power-cotangent-phase vortices. Accordingly, the effect of multiple beam parameters on abruptly autofocusing ability is quantified and compared by using the K-value curve that is described by ratio Im/I, where Im and I correspond to the maximum intensities at different propagation distance and the initial plane, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses the prediction of a ghost surface magnon-plasmon polariton (GSMPP) in antiferromagnets with a graphene layer under an external magnetic field, highlighting its unique frequency characteristics.
  • It outlines two conditions for GSMPP existence: the presence of an external magnetic field and a frequency above the electronic-cyclotron frequency of graphene, forming a triangular frequency-field region.
  • The findings suggest that GSMPP is highly tunable and experimentally verifiable, with potential applications in spintronics and surface optics.
View Article and Find Full Text PDF

We report an effective method to shape a photonic jet (PJ) generated by a dielectric cuboid scatterer on a hollow reflection screen. The study focuses on the shaping of PJ by hollow and cuboid geometries, including side length, depth, and position. The results show that all the geometric parameters can effectively shape the PJ in characteristic parameters of intensity, focal length (FL), and lateral size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!