Superoxide and myeloperoxidase (MPO) are essential for the oxidative killing of bacteria by neutrophils. Previously, we developed a kinetic model to demonstrate that within the confines of neutrophil phagosomes, superoxide should react exclusively with MPO and be converted to hypochlorous acid. The model consists of all known reactions and rate constants for reactions of superoxide, hydrogen peroxide, and chloride ions with MPO, except for the reaction of superoxide with compound I, which could only be estimated. Compound I is a transitory redox intermediate of MPO that is responsible for oxidizing chloride ions to hypochlorous acid. To tackle the challenge of observing the reaction between two transient species, we combined stopped-flow spectrophotometry with pulse radiolysis. Using this technique, we directly observed the reduction of compound I by superoxide. The rate constant for the reaction was determined to be 5.6±0.3×10(6)M(-1)s(-1). This value establishes superoxide as one of the best substrates for compound I. Based on this value, the rate constant for reduction of compound II by superoxide was determined to be 1.2±0.1×10(6)M(-1)s(-1). Within phagosomes, the reduction of compound I by superoxide will compete with the oxidation of chloride ions so that the relative concentrations of these two substrates will affect the yield of hypochlorous acid. Characterization of this reaction confirms that superoxide is a physiological substrate for MPO and that their interactions are central to an important host defense mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.019 | DOI Listing |
Food Environ Virol
January 2025
Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China. Electronic address:
MicroPubl Biol
December 2024
Shimane University, Matsue, Shimane, Japan.
The reversal of phototaxis has been observed in a wide range of animal species. However, environmental chemicals that can cause a quick reversal of phototaxis have rarely been reported. Here we identified hypochlorous acid (HClO) as an inducer of phototactic reversal in , also known as sea fireflies.
View Article and Find Full Text PDFChem Asian J
December 2024
Nanjing University of Posts and Telecommunications, 9 Wenyuan road, nanjing, CHINA.
Hypochlorous acid(HClO)/hypochlorite ion (ClO-) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO- in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!