In multicellular organisms, uncontrolled movement of cells can contribute to pathological conditions, such as multiple sclerosis and cancer. In highly aggressive tumors, the expression of matrix metalloproteinases (MMPs) is linked to the capacity of tumor cells to invade surrounding tissue and current research indicates that the membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a central role in this process. Endocytosis and trafficking of MT1-MMP are essential for its proper function, and here we examine the phosphorylation, internalization, and recycling of this enzyme, and the associated biochemical signaling in HeLa and HT-1080 fibrosarcoma cells. Activation of protein kinase C with phorbol 12-myristate 13-acetate resulted in phosphorylation of endogenous MT1-MMP at Thr(567) in vivo. Mutation of Thr(567) to alanine (to mimic non-phosphorylated MT1-MMP) reduced internalization of MT1-MMP, whereas mutation of Thr(567) to glutamic acid (to mimic phosphorylation) resulted in decreased levels of MT1-MMP on the cell surface. The endosomal trafficking and recycling of MT1-MMP was found to be dependent upon Rab7 and VAMP7, and blocking the function of these proteins reduced cell migration and invasion. Intracellular trafficking of MT1-MMP was observed to be coupled to the trafficking of integrin α5 and phosphorylation of ERK that coincided with this was dependent on phosphorylation of MT1-MMP. Together, these results reveal important roles for MT1-MMP phosphorylation and trafficking in both cell signaling and cell invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234865 | PMC |
http://dx.doi.org/10.1074/jbc.M111.297069 | DOI Listing |
Maintaining a dynamic neuronal synapse pool is critical to brain development. The extracellular matrix (ECM) regulates synaptic plasticity via mechanisms that are still being defined and are studied predominantly in adulthood. Using live imaging of excitatory synapses in zebrafish hindbrain we observed a bimodal distribution of short-lived (dynamic) and longer-lived (stable) synapses.
View Article and Find Full Text PDFEur J Med Chem
February 2025
Drug Clinical Trial Facility Office, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China. Electronic address:
Syntenin, an intracellular scaffold protein, plays a critical role in renal cell carcinoma (RCC) progression, underscoring its potential as a therapeutic target. Herein, we report a novel, highly efficient, and stable peptide inhibitor (PDPP-3) that exhibits excellent inhibitory effects on syntenin. We have constructed a combined virtual screening scheme based on pharmacophore modeling and molecular docking to identify six potential d-amino acid-containing peptide inhibitors targeting syntenin.
View Article and Find Full Text PDFMol Cancer
February 2025
Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA.
Background: HNSCC presents a significant health challenge due to its high mortality resulting from treatment resistance and locoregional invasion into critical structures in the head and neck region. Understanding the invasion mechanisms of HNSCC has the potential to guide targeted therapies, improving patient survival. Previously, we demonstrated the involvement of doublecortin like kinase 1 (DCLK1) in regulating HNSCC cell invasion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil.
The aim of this study was to verify whether the expression of proteins related to the formation of invadopodia, MT1-MMP, cortactin, Tks-4 and Tks-5 is associated with the degree of tumor invasiveness of different types of unicystic ameloblastomas. An immunohistochemical study was performed on 29 unicystic ameloblastoma (UA) samples, 9 conventional ameloblastoma (CAM) samples and 9 dental follicle (DF) samples. The potential for tumor invasiveness was assessed based on the immunoexpression of the following invadopodia-forming proteins: MT1-MMP, cortactin, Tks-4 and Tks5.
View Article and Find Full Text PDFCells
January 2025
The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK.
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!