Cytarabine (ara-C) and gemcitabine (dFdC) are commonly used anticancer drugs, which depend on the equilibrative (ENT) and concentrative-nucleoside-transporters to enter the cell. To bypass transport-related drug resistance, lipophilic derivatives elacytarabine (CP-4055), ara-C-5'elaidic-acid-ester, and CP-4126, (CO 1.01) gemcitabine-5'elaidic-acid-ester, were investigated for the entry into the cell, distribution, metabolism and retention. The leukemic CEM-cell-line and its deoxycytidine-kinase deficient variant (CEM/dCK-) were exposed for 30 and 60 min to the radiolabeled drugs; followed by culture in drug-free medium in order to determine drug retention in the cell. The cellular fractions were analyzed with thin-layer-chromatography and HPLC. Elacytarabine and CP-4126 were converted to the parent compounds both inside and outside the cell (35-45%). The ENT-inhibitor dipyridamole did not affect their uptake or retention. Inside the cell Elacytarabine and CP-4126 predominantly localized in the membrane and cytosolic fraction, leading to a long retention after removal of the medium. In contrast, in cells exposed to the parent drugs ara-C and dFdC, intracellular drug concentration increased during exposure but decreased to undetectable levels after drug removal. In the dCK- cell line, no metabolism was observed. The concentrations of ara-CTP and dFdCTP reached a peak at the end of the incubation with the drugs, and decreased after drug removal; peak levels of dFdCTP were 35 times higher than ara-CTP and was retained better. In contrast, after exposure to elacytarabine or CP-4126, ara-CTP and dFdCTP levels continued to increase not only during exposure but also during 120 min after removal of the elacytarabine and CP-4126. Levels of ara-CTP and dFdCTP were higher than after exposure to the parent drugs. In conclusion, the lipophilic derivatives elacytarabine and CP-4126 showed a nucleoside-transporter independent uptake, with long retention of the active nucleotides. These lipophilic nucleoside analogues are new chemical entities suitable for novel clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432794PMC
http://dx.doi.org/10.1007/s10637-011-9756-8DOI Listing

Publication Analysis

Top Keywords

elacytarabine cp-4126
24
ara-ctp dfdctp
12
lipophilic derivatives
8
derivatives elacytarabine
8
inside cell
8
long retention
8
parent drugs
8
drug removal
8
elacytarabine
7
cp-4126
7

Similar Publications

Novel developments in the use of antimetabolites.

Nucleosides Nucleotides Nucleic Acids

February 2015

a Department of Medical Oncology , VU University Medical Center, 1081 HV , Amsterdam , The Netherlands.

Antimetabolites are the most widely used and most efficacious group of anticancer drugs. Antimetabolites are also the oldest rationally designed anticancer drugs, targeted against RNA and DNA, and can, therefore, be considered as the first generation of targeted drugs. Unfortunately, resistance often develops, leading to the design of new antimetabolites, which either have a novel mechanism of action, bypass resistance or in combination enhance the effect of other drugs, such as another antimetabolite, other DNA, or protein kinase targeted anticancer drugs.

View Article and Find Full Text PDF

Cytarabine (ara-C) and gemcitabine (dFdC) are commonly used anticancer drugs, which depend on the equilibrative (ENT) and concentrative-nucleoside-transporters to enter the cell. To bypass transport-related drug resistance, lipophilic derivatives elacytarabine (CP-4055), ara-C-5'elaidic-acid-ester, and CP-4126, (CO 1.01) gemcitabine-5'elaidic-acid-ester, were investigated for the entry into the cell, distribution, metabolism and retention.

View Article and Find Full Text PDF

The deoxynucleoside analogs cytarabine (Ara-C) and gemcitabine (dFdC) are widely used in the treatment of cancer. Due to their hydrophilic nature they need the equilibrative (hENT) and concentrative (hCNT) nucleoside transporters to enter the cell. To bypass drug resistance due to decreased uptake, lipophilic 5'elaidic acid esters were synthesized, elacytarabine (CP-4055, from ara-C) and CP-4126 (from gemcitabine), which are currently in clinical development for solid and hematological tumors.

View Article and Find Full Text PDF

The clinical activity of pyrimidine analogues (araC and gemcitabine) is impaired by different mechanisms of resistance and several efforts to overcome this problem have been undertaken. Elacytarabine (CP-4055, araC-5'elaidic acid ester) and CP-4126 (gemcitabine-5'elaidic acid ester) are lipophilic fatty acid derivatives of the nucleoside analogues araC and gemcitabine, respectively, that are currently investigated in clinical trials in solid tumors and hematological malignancies. Here, we present results on the activity of elacytarabine and CP-4126 in a panel of tumor cell lines that are resistant to araC and gemcitabine and we discuss the potential use of these agents in the treatment of patients with drug resistance phenotypes.

View Article and Find Full Text PDF

To bypass resistance due to limited entry into the cell derivatives of cytarabine (CP-4055, elacytarabine) and gemcitabine (CP-4126) containing a fatty acid chain at the 5' position of the nucleoside were developed. CP-4055 showed an increased retention of the active metabolite, the triphosphate. This characteristic was supposed to favor combinations, such as with the tubulin antagonist docetaxel, the platinum oxaliplatin and the antifolate pemetrexed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!