Expression of tyrosine hydroxylase is epigenetically regulated in neural stem cells.

Biochem Biophys Res Commun

Institute for Medical Science, Ajou University School of Medicine, Suwon, Republic of Korea.

Published: November 2011

Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in the biosynthesis of catecholamines, and its expression is regulated in a developmental stage- and cell type-specific manner. Our previous work suggested that the genetic elements responsible for cell type-specific expression of TH were in the repressor region of the TH promoter between -2187 and -1232 bp. To investigate the molecular mechanisms underlying the specificity of TH expression, the DNA methylation patterns of the CpG islands in the repressor region of the TH promoter were examined in human neural stem cells (NSCs) and dopaminergic neuron-like cells. Using a bisulfite sequencing method, we found that the cytosine residues of CpG islands within the NRSE-R site were specifically methylated in NSCs, but not in SH-SY5Y neuroblastoma cells. In NSCs, CpG methylation correlated with reduced TH gene expression, and inhibition of DNA methylation with 5-azacytidine restored TH expression. Furthermore, methyl-CpG binding domain proteins (MBDs) bound to the highly methylated X-1 and X-2 regions of the TH gene in NSCs. Taken together, these results suggest that region-specific methylation and MBDs play important roles in TH gene regulation in NSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.09.141DOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
8
neural stem
8
stem cells
8
cell type-specific
8
repressor region
8
region promoter
8
dna methylation
8
cpg islands
8
cells nscs
8
expression
6

Similar Publications

TFE3-mediated neuroprotection: Clearance of aggregated α-synuclein and accumulated mitochondria in the AAV-α-synuclein model of Parkinson's disease.

Genes Dis

March 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions containing aggregated α-synuclein (α-Syn). While the pathology of PD is multifaceted, the aggregation of α-Syn and mitochondrial dysfunction are well-established hallmarks in its pathogenesis. Recently, TFE3, a transcription factor, has emerged as a regulator of autophagy and metabolic processes.

View Article and Find Full Text PDF

Space exploration and risk of Parkinson's disease: a perspective review.

NPJ Microgravity

January 2025

Department of Biological Science, Boise State University, Boise, ID, 83725, USA.

Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.

View Article and Find Full Text PDF

For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Objective: This study aims to investigate the molecular mechanisms by which YWHAG (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma) promotes metastasis in bladder cancer. Specifically, it seeks to elucidate the role of YWHAG in driving cancer cell invasion and its potential as a prognostic marker for bladder cancer progression.

Methods: The expression pattern of YWHAG in both primary and metastatic bladder cancer tissues was analyzed using immunohistochemistry (IHC) to determine its correlation with clinical stage and prognosis in bladder cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!