A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new multigene superfamily of Kunitz-type protease inhibitors from sea anemone Heteractis crispa. | LitMetric

Despite a considerable number of publications devoted to isolation and physicochemical properties of protease inhibitors from sea anemones, virtually nothing is known about the structure of the genes, and the nature of their isoforms diversity. Using the PCR-based cloning approach we discovered the Kunitz-type multigene superfamily composed of distinct gene families (GS-, RG-, GG-, and GN-gene families). It has been identified only three full-length GS-transcripts indicating a much greater variety of Kunitz homologs in Heteractis crispa. We have examined an exon-intron structure of GS-genes; an open reading frame is interrupted by a single intron located at the middle of the signal peptide. 33 deduced mature GS-polypeptides have been categorized into three groups according to the nature of a P1 residue. Some of them corresponded to native Kunitz-type protease inhibitors earlier isolated from H. crispa. The deduced GS-polypeptide sequences demonstrated diverse charge distribution ranging from the local point charges forms to the overall positive ones. We have suggested that the GS-gene family has evolved through gene tandem duplication followed by adaptive divergence of the P1 residue in the reactive site selected for divergent functions in paralogs. The expansion of this Kunitz-type multigene superfamily during evolution is lineage-specific, providing the tropical sea anemone H. crispa with the ability to interact an increasing diversity of the preys and predators. Our results show that the Kunitz-type polypeptides are encoded by a multigene superfamily and realized via a combinatory Kunitz-type library in the H. crispa tentacles venom.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2011.09.022DOI Listing

Publication Analysis

Top Keywords

multigene superfamily
16
protease inhibitors
12
kunitz-type protease
8
inhibitors sea
8
sea anemone
8
heteractis crispa
8
kunitz-type multigene
8
kunitz-type
6
crispa
5
multigene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!