Identification of Salmonella enterica species- and subgroup-specific genomic regions using Panseq 2.0.

Infect Genet Evol

Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada.

Published: December 2011

The pan-genome of a taxonomic group consists of evolutionarily conserved core genes shared by all members and accessory genes that are present only in some members of the group. Group- and subgroup-specific core genes are thought to contribute to shared phenotypes such as virulence and niche specificity. In this study we analyzed 39 Salmonella enterica genomes (16 closed, 23 draft), a species that contains two human-specific serovars that cause typhoid fever, as well as a large number of zoonotic serovars that cause gastroenteritis in humans. Panseq 2.0 was used to define the pan-genome by adjusting the threshold at which group-specific "core" loci are defined. We found the pan-genome to be 9.03 Mbp in size, and that the core genome size decreased, while the number of SNPs/100 bp increased, as the number of strains used to define the core genome increased, suggesting substantial divergence among S. enterica subgroups. Subgroup-specific "core" genes, in contrast, had fewer SNPs/100 bp, likely reflecting their more recent acquisition. Phylogenetic trees were created from the concatenated and aligned pan-genome, the core genome, and multi-locus-sequence typing (MLST) loci. Branch support increased among the trees, and strains of the same serovar grouped closer together as the number of loci used to create the tree increased. Further, high levels of discrimination were achieved even amongst the most closely related strains of S. enterica Typhi, suggesting that the data generated by Panseq may also be of value in short-term epidemiological studies. Panseq provides an easy and fast way of performing pan-genomic analyses, which can include the identification of group-dominant as well as group-specific loci and is available as a web-server and a standalone version at http://lfz.corefacility.ca/panseq/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2011.09.021DOI Listing

Publication Analysis

Top Keywords

core genome
12
salmonella enterica
8
core genes
8
core
5
identification salmonella
4
enterica
4
enterica species-
4
species- subgroup-specific
4
subgroup-specific genomic
4
genomic regions
4

Similar Publications

Aligning genomes into common coordinates is central to pangenome analysis and construction, but it is also computationally expensive. Multi-sequence maximal unique matches (multi-MUMs) are guideposts for core genome alignments, helping to frame and solve the multiple alignment problem. We introduce Mumemto, a tool that computes multi-MUMs and other match types across large pangenomes.

View Article and Find Full Text PDF

Objectives: This study aims to assess the potential mechanism of rutin to treat triple-negative breast cancer (TNBC) based on network pharmacology followed by experiments.

Methods: The potential rutin targets were predicted, and the DisGeNET database was used to obtain the disease targets. The intersection targets were identified with Venny 2.

View Article and Find Full Text PDF

Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth.

View Article and Find Full Text PDF

In the global effort to discover or design new effective antibiotics to fight infectious diseases, the increasingly available multi-omics data with novel bioinformatics tools open up new horizons for the exploration of the genetic potential of bacteria to synthesize bioactive secondary metabolites. Rare actinomycetes are a prolific source of structurally diverse secondary metabolites that exhibit remarkable clinical and industrial importance. Recently several excellent genome mining tools have been available for identifying biosynthetic gene clusters, however in cases of poor-quality sequences and inappropriate genome assembly, these tools are not always able to identify the corresponding gene clusters.

View Article and Find Full Text PDF

The genome sequence of a tachinid fly, (Fallén, 1810).

Wellcome Open Res

November 2024

Natural History Museum, London, England, UK.

We present a genome assembly from an individual male tachinid fly, (Arthropoda; Insecta; Diptera; Tachinidae). The genome sequence has a total length of 554.00 megabases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!