N-terminal truncated amyloid beta (Aβ) derivatives, especially the forms having pyroglutamate at the 3 position (AβpE3) or at the 11 position (AβpE11) have become the topic of considerable study. AβpE3 is known to make up a substantial portion of the Aβ species in senile plaques while AβpE11 has received less attention. We have generated very specific polyclonal antibodies against both species. Each antibody recognizes only the antigen against which it was generated on Western blots and neither recognizes full length Aβ. Both anti-AβpE3 and anti-AβpE11 stain senile plaques specifically in Alzheimer's disease cerebral cortex and colocalize with Aβ, as shown by confocal microscopy. In a majority of plaques examined, AβpE11 was observed to be the dominant form in the innermost core. These data suggest that AβpE11 may serve as a generating site for senile plaque formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253715 | PMC |
http://dx.doi.org/10.1016/j.neulet.2011.09.071 | DOI Listing |
ACS Chem Neurosci
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, extracellular amyloid-β (Aβ) plaque accumulation, and intracellular neurofibrillary tangles. Recent efforts to find effective therapies have increased interest in natural compounds with multifaceted effects on AD pathology. This study explores natural compounds for their potential to mitigate AD pathology using molecular docking, ADME screening, and assays, with ruscogenin─a steroidal sapogenin from emerging as a promising candidate.
View Article and Find Full Text PDFJ Neurosurg
January 2025
4Department of Neurosurgery, Korea University Anam Hospital, Seoul, Republic of Korea.
Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
Background: Type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) are two prevalent chronic diseases that pose significant global health challenges. Increasing evidence suggests a complex bidirectional relationship between these conditions, where T2D elevates the risk of AD, and AD exacerbates glucose metabolism abnormalities in T2D.
Objective: This review explores the molecular mechanisms linking T2D and AD, focusing on the role of insulin signaling pathways and oxidative stress.
J Alzheimers Dis
January 2025
Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Groningen, The Netherlands.
Background: Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by amyloid-β plaques and neurofibrillary tangles. With an aging population, both AD and comorbidities are increasingly common. Managing comorbidities often requires multiple medications, leading to polypharmacy, defined as the concurrent use of five or more medications.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China.
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!