We synthesized block copolymer composed of hyaluronic acid (HA) and poly(DL-lactide-co-glycolide) (PLGA) (HAbLG) for antitumor targeting. (1)H NMR was employed to confirm synthesis of block copolymer. At (1)H NMR study, HabLG nanoparticles showed HA intrinsic peaks only at D(2)O, indicating that they contained HA as a hydrophilic outer-shell and PLGA as a inner-core. Anti-tumor activity was studied using CD44-overexpressing HCT-116 human colon carcinoma cells. Addition of doxorubicin (DOX)-incorporated nanoparticles to tumor cells resulted in the expression of a strong red fluorescence color while they expressed very weak fluorescence when CD44 receptor was blocked with free HA. Flow cytometry data also showed similar results, indicating that the fluorescence intensity of tumor cells treated with nanoparticles was significantly decreased when CD44 receptor was blocked. These results indicate that HAbLG nanoparticles were able to target CD44-overexpressing tumor cells via receptor-mediated endocytosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.09.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!