Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2011.08.005 | DOI Listing |
BMC Plant Biol
February 2024
Department Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes.
View Article and Find Full Text PDFPlant Cell Rep
August 2023
Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance.
View Article and Find Full Text PDFFunct Plant Biol
June 2022
Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; and Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany.
Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves.
View Article and Find Full Text PDFNucleus
December 2020
Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA.
Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse ("congelation"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium.
View Article and Find Full Text PDFPolymers (Basel)
December 2019
IK4-TEKNIKER, C/IñakiGoenaga 5, 20600 Eibar, Spain.
Porous scaffolds made of elastomeric materials are of great interest for soft tissue engineering. Poly(L-lactide-co--caprolactone) (PLCL) is a bio-resorbable elastomeric copolymer with tailorable properties, which make this material an appropriate candidate to be used as scaffold for vascular, tendon, and nerve healing applications. Here, extrusion was applied to produce porous scaffolds of PLCL, using NaCl particles as a leachable agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!