Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.).

Plant Physiol Biochem

Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun 130062, China.

Published: November 2011

Calcineurin B-like proteins play important roles in the calcium perception and signal transduction of abiotic stress. In this study, the bioinformatic analysis of molecular characteristics of Sorghum bicolor calcineurin B-like protein (SbCBL) revealed that sequences of SbCBL are highly conserved, and most SbCBLs have three typical EF-hands structures. Among the SbCBL proteins, four of which, SbCBL01, 04, 05, 08, have a conserved N-myristoylation domain. Stress-responsive and phytohormone-responsive cis-elements were found in the promoter regions of SbCBL genes. Real-time quantitative polymerase chain reaction (RTqPCR) analysis showed that SbCBL genes have different tissue-specific expression patterns under normal growth conditions in sweet sorghum (Sorghum bicolor L. Moench). Interestingly, when treated with sodium carbonate, SbCBL genes also show various sodium carbonate stress responsive patterns in sweet sorghum seedlings. These results suggest that SbCBLs may participate in regulating sodium carbonate stress-specific cellular adaptation responses and influencing growth and developmental patterns in sweet sorghum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2011.08.010DOI Listing

Publication Analysis

Top Keywords

sweet sorghum
16
sorghum bicolor
12
sodium carbonate
12
sorghum sorghum
8
bicolor calcineurin
8
calcineurin b-like
8
sbcbl genes
8
patterns sweet
8
sorghum
7
sbcbl
5

Similar Publications

Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.

View Article and Find Full Text PDF

Uncovering the key lncRNAs in regulating cadmium accumulation and translocation in sweet sorghum.

Planta

December 2024

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

1988 lncRNAs were identified in sweet sorghum roots under cadmium treatment; lncRNA 15962 and lncRNA 11558 were validated to be the key lncRNAs involved in regulating cadmium accumulation and translocation. Cadmium (Cd) has become one of the most harmful and widespread pollutants with industry development. Sweet sorghum is an ideal plant for phytoremediation of Cd-contaminated soil.

View Article and Find Full Text PDF

Establishment of a genome-editing system to create fragrant germplasm in sweet sorghum.

aBIOTECH

December 2024

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Sorghum, the fifth largest global cereal crop, comprises various types, such as grain, sweet, forage, and biomass sorghum, delineated by their designated end uses. Among these, sweet sorghum ( (L.) Moench) stands out for its unique versatility, exceptional abiotic stress tolerance and large biomass serving the multi-purpose of high-sugar forage, syrup, and biofuel production.

View Article and Find Full Text PDF

Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.

View Article and Find Full Text PDF

Lignin nanoparticles (LNPs) exhibit application potential in fields such as ultraviolet (UV) shielding, antioxidant materials, and water purification owing to their versatile chemical structure. However effective, nontoxic solvent-based strategies to synthesize LNPs with diverse morphologies have not been reported. This study presents a continuous biorefinery method to produce monodisperse LNPs with diverse morphologies from isopropanol-solubilized lignin (IPA-lignin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!