Root exudates influence significantly physical, chemical and biological characteristics of rhizosphere soil. Their qualitative and quantitative composition is affected by environmental factors such as pH, soil type, oxygen status, light intensity, soil temperature, plant growth, nutrient availability and microorganisms. The aim of the present study was to assess the influence of growth substrate and plant age on the release of carboxylates from Lupinus albus L. and Brassica napus L. Both plant species were studied in continuously percolated microcosms filled with either sand, soil or sand + soil (1:1) mixture. Soil solution was collected every week at 7, 14, 21, 28 and 35 days after planting (DAP). Carboxylate concentrations were determined by reversed-phase liquid chromatography - electrospray ionization - time of flight mass spectrometry (LC-ESI-TOFMS). Oxalate, citrate, succinate, malate and maleate were detected in soil solutions of both plant species. Their concentrations were correlated with the physiological status of the plant and the growth substrate. Oxalate was the predominant carboxylate detected within the soil solution of B. napus plants while oxalate and citrate were the predominant ones found in the soil solutions of L. albus plants. The sampling determination of carboxylates released by plant roots with continuous percolation systems seems to be promising as it is a non-destructive method and allows sampling and determination of soluble low molecular weight organic compounds derived from root exudation as well as the concentration of soluble nutrients, which both might reflect the nutritional status of plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2011.08.012 | DOI Listing |
Plants (Basel)
December 2024
Institut für Angewandte Wissenschaft, Ausbau 5, 18258 Rukieten, Germany.
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.
View Article and Find Full Text PDFPlanta
December 2023
Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan.
Different lupin species exhibited varied biomass, P allocation, and physiological responses to P-deprivation. White and yellow lupins had higher carboxylate exudation rates, while blue lupin showed the highest phosphatase activity. White lupin (Lupinus albus) can produce specialized root structures, called cluster roots, which are adapted to low-phosphorus (P) soil.
View Article and Find Full Text PDFPhysiol Plant
November 2022
Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany.
Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2022
Biology/Ecology Unit, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany.
This study presents how phosphate (P) availability and intercropping may influence the migration of rare earth elements (REEs) in legume-grass associations. In a replacement model, Hordeum vulgare was intercropped with 11% Lupinus albus and 11% Lupinus angustifolius. They were cultivated on two substrates, A (pH = 7.
View Article and Find Full Text PDFSci Total Environ
September 2021
EcoHealth Network, 1330 Beacon St, Suite 355a, Brookline, MA 02446, United States; School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Bentley, WA 6102, Australia. Electronic address:
Mine tailings pose physical and chemical challenges for plant establishment. Our aim was to learn from natural processes in long-term soil and ecosystem development to use tailings as novel parent materials and pioneer ecological-engineering plant species to ameliorate extreme conditions of tailings, and facilitate the establishment of subsequent native plants. A glasshouse trial was conducted using magnetite tailings containing various amendments, investigating the potential of the nitrogen (N)-fixing, non-native pioneer species Lupinus angustifolius (Fabaceae), narrow-leaf lupin, as a potential eco-engineer to promote soil formation processes, and whether amendment type or the presence of pioneer vegetation improved the subsequent establishment and growth of 40 species of native plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!