Introns within ribosomal protein genes regulate the production and function of yeast ribosomes.

Cell

Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada.

Published: October 2011

In budding yeast, the most abundantly spliced pre-mRNAs encode ribosomal proteins (RPs). To investigate the contribution of splicing to ribosome production and function, we systematically eliminated introns from all RP genes to evaluate their impact on RNA expression, pre-rRNA processing, cell growth, and response to stress. The majority of introns were required for optimal cell fitness or growth under stress. Most introns are found in duplicated RP genes, and surprisingly, in the majority of cases, deleting the intron from one gene copy affected the expression of the other in a nonreciprocal manner. Consistently, 70% of all duplicated genes were asymmetrically expressed, and both introns and gene deletions displayed copy-specific phenotypic effects. Together, our results indicate that splicing in yeast RP genes mediates intergene regulation and implicate the expression ratio of duplicated RP genes in modulating ribosome function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2011.08.044DOI Listing

Publication Analysis

Top Keywords

duplicated genes
12
production function
8
genes
6
introns
5
introns ribosomal
4
ribosomal protein
4
protein genes
4
genes regulate
4
regulate production
4
function yeast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!