While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of predefined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments. However, traditional antibody-based approaches are not optimal for analyzing large numbers of protein abundances and modifications across many samples. In this article, we will review recent advances in methodologies and philosophies behind several microarray-based, intermediate-level, 'protein-omic' methods, including a focus on reverse-phase lysate arrays and micro-western arrays, which have been helpful for bridging gaps between large- and small-scale protein analysis approaches and have provided insight into the roles that protein systems play in several biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269123 | PMC |
http://dx.doi.org/10.1586/epr.11.49 | DOI Listing |
Med Oral Patol Oral Cir Bucal
January 2025
15, Trauma Centre, District Hospital Neemuch Madhya Pradesh - 458441, India
Background: The accurate and timely diagnosis of oral potentially malignant lesions (OPMLs) is crucial for effective management and prevention of oral cancer. Recent advancements in artificial intelligence technologies indicates its potential to assist in clinical decision-making. Hence, this study was carried out with the aim to evaluate and compare the diagnostic accuracy of ChatGPT 3.
View Article and Find Full Text PDFEcohealth
January 2025
Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.
View Article and Find Full Text PDFPilot Feasibility Stud
January 2025
School of Medicine, University of Limerick, Limerick, Ireland.
Background: Stroke has devastating consequences for survivors. Hypertension is the most important modifiable risk factor, and its management largely takes place in primary care. However, most stroke-based research does not occur in this setting.
View Article and Find Full Text PDFScand J Trauma Resusc Emerg Med
January 2025
Department of Emergency Medicine and Pre-Hospital Services, St. Olav's University Hospital, Trondheim, Norway.
Background: First responders exist in several countries and have been a prehospital emergency medical resource in Norwegian municipalities since 2010. However, the Norwegian system has not yet been studied. The aim of this study was to describe the first responder system in Central Norway and how it is used as a supplement to emergency medical services (EMS).
View Article and Find Full Text PDFBMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!