Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches.

Expert Rev Proteomics

The Ben May Department for Cancer Research, and The Institute for Genomics & Systems Biology, The University of Chicago, Chicago, IL 60637, USA.

Published: October 2011

While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of predefined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments. However, traditional antibody-based approaches are not optimal for analyzing large numbers of protein abundances and modifications across many samples. In this article, we will review recent advances in methodologies and philosophies behind several microarray-based, intermediate-level, 'protein-omic' methods, including a focus on reverse-phase lysate arrays and micro-western arrays, which have been helpful for bridging gaps between large- and small-scale protein analysis approaches and have provided insight into the roles that protein systems play in several biological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269123PMC
http://dx.doi.org/10.1586/epr.11.49DOI Listing

Publication Analysis

Top Keywords

large numbers
12
protein analysis
8
analysis approaches
8
numbers proteins
8
cells cell
8
cell compartments
8
traditional antibody-based
8
small numbers
8
protein
6
methods
5

Similar Publications

Background: The accurate and timely diagnosis of oral potentially malignant lesions (OPMLs) is crucial for effective management and prevention of oral cancer. Recent advancements in artificial intelligence technologies indicates its potential to assist in clinical decision-making. Hence, this study was carried out with the aim to evaluate and compare the diagnostic accuracy of ChatGPT 3.

View Article and Find Full Text PDF

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

Background: Stroke has devastating consequences for survivors. Hypertension is the most important modifiable risk factor, and its management largely takes place in primary care. However, most stroke-based research does not occur in this setting.

View Article and Find Full Text PDF

Background: First responders exist in several countries and have been a prehospital emergency medical resource in Norwegian municipalities since 2010. However, the Norwegian system has not yet been studied. The aim of this study was to describe the first responder system in Central Norway and how it is used as a supplement to emergency medical services (EMS).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!