A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic201461aDOI Listing

Publication Analysis

Top Keywords

electrocatalysts production
8
[nipr2nph22ch3cn]bf42 complexes
8
synthesized characterized
8
characterized x-ray
8
x-ray diffraction
8
diffraction studies
8
complexes
5
studies series
4
series [nipr2nph22ch3cn]2+
4
[nipr2nph22ch3cn]2+ complexes
4

Similar Publications

Effective Nitrate Electroconversion to Ammonia Using an Entangled CoO/Graphene Nanoribbon Catalyst.

ACS Appl Mater Interfaces

December 2024

Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil.

There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO) to ammonia (NH) due to the useful application of NH in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied CoO/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO to NH, where NH yield rate of 42.

View Article and Find Full Text PDF

The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions.

View Article and Find Full Text PDF

Artificial N fixation via the electrocatalytic nitrogen (N) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO-ZrN@KB and ZrO-ZrN systems, synthesized through the nitriding of Zr.

View Article and Find Full Text PDF

The excessive accumulation of nitrate/nitrite (NO ) in surface and groundwater has severely disrupted the global nitrogen cycle and jeopardized public health. The electrochemical conversion of NO to ammonia (NH) not only holds promise for ecofriendly NO removal, but also provides a green alternative to the energy-intensive Haber-Bosch process for NH production. Recently, in addition to the electrocatalyst design explosion in this field, many innovative valorization systems based on NO -to-NH conversion have been developed for generating energy and expanding the range of value-added products.

View Article and Find Full Text PDF

Facile synthesis of Ir-based high-entropy alloy nanomaterials for efficient oxygen evolution electrocatalysis.

J Colloid Interface Sci

December 2024

Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China; School of Materials Science & Engineering, Xi'an University of Technology, Xi'an 710048, China. Electronic address:

High-entropy alloy (HEA) nanomaterials have emerged as promising candidates as oxygen evolution reaction (OER) electrocatalyst to overcome the existing issues of the sluggish reaction kinetics and poor stability. In this study, IrRuCoCuNi HEA three-dimensional-nanoframeworks (3DNF) are prepared using a scalable approach-the spray-drying technique combined with thermal decomposition reduction (SD-TDR). The optimized catalyst, IrRuCoCuNi, demonstrates superior OER performance, with an overpotential of 264 mV at 10 mA cm and a Tafel slope of 47 mV dec, considerably surpassing the catalytic activity of commercial IrO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!