Molecular changes associated with hippocampal long-lasting depression induced by the serine protease subtilisin-A.

Eur J Neurosci

Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow UK.

Published: October 2011

The serine protease subtilisin-A (SubA) induces a form of long-term depression (LTD) of synaptic transmission in the rat hippocampus, and molecular changes associated with SubA-induced LTD (SubA-LTD) were explored by using recordings of evoked postsynaptic potentials and immunoblotting. SubA-LTD was prevented by a selective inhibitor of SubA proteolysis, but the same inhibitor did not affect LTD induced by electrical stimulation or activation of metabotropic glutamate receptors. SubA-LTD was reduced by the protein kinase inhibitors genistein and lavendustin A, although not by inhibitors of p38 mitogen-activated protein kinase, glycogen synthase kinase-3, or protein phosphatases. It was also reduced by (RS)-α-methyl-4-carboxyphenylglycine, a broad-spectrum antagonist at metabotropic glutamate receptors. Inhibition of the Rho kinase enzyme Rho-associated coiled-coil kinase reduced SubA-LTD, although inhibitors of the RhoGTPase-activating enzymes farnesyl transferase and geranylgeranyl transferase did not. In addition, a late phase of SubA-LTD was dependent on new protein synthesis. There was a small, non-significant difference in SubA-LTD between wild-type and RhoB(-/-) mice. Marked decreases were seen in the levels of Unc-5H3, a protein that is intimately involved in the development and plasticity of glutamatergic synapses. Smaller changes were noted, at higher concentrations of SubA, in Unc-5H1, vesicle-associated membrane protein-1 (synaptobrevin), and actin, with no changes in the levels of synaptophysin, synaptotagmin, RhoA, or RhoB. None of these changes was associated with LTD induced electrically or by the metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine. These results indicate that SubA induces molecular changes that overlap with other forms of LTD, but that the overall molecular profile of SubA-LTD is quite different.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2011.07853.xDOI Listing

Publication Analysis

Top Keywords

molecular changes
12
changes associated
12
metabotropic glutamate
12
serine protease
8
protease subtilisin-a
8
suba induces
8
glutamate receptors
8
protein kinase
8
suba-ltd
7
changes
5

Similar Publications

Study Question: How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition?

Summary Answer: A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections.

What Is Known Already: Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes.

Study Design, Size, Duration: Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery.

View Article and Find Full Text PDF

Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.

Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.

View Article and Find Full Text PDF

Light-Inducible Deformation of Mitochondria in Live Cells.

Methods Mol Biol

December 2024

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Mitochondria are dynamic organelles with constantly changing morphologies. Despite recent reports indicating that mechanical cues modulate mitochondrial morphologies and functions, there is a lack of methods that can exclusively and precisely exert mechanical forces to and deform mitochondria in live cells. Therefore, how mitochondria sense and respond to mechanical forces remains largely elusive.

View Article and Find Full Text PDF

Millets for a sustainable future.

J Exp Bot

December 2024

Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Our current agricultural system faces a perfect storm-climate change, burgeoning population, and unpredictable outbreaks like COVID-19 disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production.

View Article and Find Full Text PDF

Molecular and clinical characterization of two independent Chinese families with protein C deficiency.

Ann Hematol

December 2024

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China.

This study aims to investigate the clinical characterization and molecular pathogenic basis of hereditary protein C (PC) deficiency in two independent Chinese families, and conduct in vitro expression studies on the newly discovered p.Trp444Arg mutation. The PC activity (PC: A) was tested using the chromogenic substrate, and PC antigen (PC: Ag) was detected via enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!