The effects of water on ion fluorescence were investigated, and average sequential water molecule binding energies to hydrated ions, M(z)(H(2)O)(n), at large cluster size were measured using ion nanocalorimetry. Upon 248-nm excitation, nanodrops with ~25 or more water molecules that contain either rhodamine 590(+), rhodamine 640(+), or Ce(3+) emit a photon with average energies of approximately 548, 590, and 348 nm, respectively. These values are very close to the emission maxima of the corresponding ions in solution, indicating that the photophysical properties of these ions in the nanodrops approach those of the fully hydrated ions at relatively small cluster size. As occurs in solution, these ions in nanodrops with 8 or more water molecules fluoresce with a quantum yield of ~1. Ce(3+) containing nanodrops that also contain OH(-) fluoresce, whereas those with NO(3)(-) do not. This indirect fluorescence detection method has the advantages of high sensitivity, and both the size of the nanodrops as well as their constituents can be carefully controlled. For ions that do not fluoresce in solution, such as protonated tryptophan, full internal conversion of the absorbed 248-nm photon occurs, and the average sequential water molecule binding energies to the hydrated ions can be accurately obtained at large cluster sizes. The average sequential water molecule binding energies for TrpH(+)(H(2)O)(n) and a doubly protonated tripeptide, [KYK + 2H](2+)(H(2)O)(n), approach asymptotic values of ~9.3 (n ≥ 11) and ~10.0 kcal/mol (n ≥ 25), respectively, consistent with a liquidlike structure of water in these nanodrops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja208072z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!