Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1 counteracts autophagy via ICP34.5, which dephosphorylates eIF2α and inhibits Beclin 1. Investigation of autophagy during HSV-1 infection has largely been conducted in permissive cells, but recent work suggests the existence of a eIF2α-independent autophagy-inducing pathway in nonpermissive cells. To clarify and further characterize the existence of a novel autophagy-inducing pathway in nonpermissive cells, we examined different HSV and cellular components in murine myeloid cells for their role in autophagy. We demonstrate that HSV-1-induced autophagy does not correlate with phosphorylation of eIF2α, is independent of functional dsRNA-dependent protein kinase, and is not antagonized by ICP34.5. Autophagy was activated independent of viral gene expression, but required viral entry. Importantly, we found that the presence of genomic DNA in the virion was essential for induction of autophagy and, conversely, that transfection of HSV-derived DNA induced microtubule-associated protein 1 L chain II formation, a marker of autophagy. This occurred through a mechanism dependent on stimulator of IFN genes, an essential component for the IFN response to intracellular DNA. Finally, we observed that HSV-1 DNA was present in the cytosol devoid of capsid material following HSV-1 infection of dendritic cells. Thus, our data suggest that HSV-1 genomic DNA induces autophagy in nonpermissive cells in a stimulator of IFN gene-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208073 | PMC |
http://dx.doi.org/10.4049/jimmunol.1100949 | DOI Listing |
Front Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.
View Article and Find Full Text PDFWhile naïve CD4+ T cells have historically been considered a homogenous population, recent studies have provided evidence that functional heterogeneity exists within this population. Using single cell RNA sequencing (scRNAseq), we identify five transcriptionally distinct naïve CD4+ T cell subsets that emerge within the single positive stage in the thymus: a quiescence cluster (TQ), a memory-like cluster (TMEM), a TCR reactive cluster (TTCR), an IFN responsive cluster (TIFN), and an undifferentiated cluster (TUND). Elevated expression of transcription factors KLF2, Mx1, and Nur77 within the TQ, TIFN, and TMEM clusters, respectively, allowed enrichment of these subsets for further analyses.
View Article and Find Full Text PDFHeliyon
January 2025
Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain.
Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.
Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).
J Interferon Cytokine Res
January 2025
Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
The suppressors of cytokine signaling (SOCS) genes were first described in a group of articles published in 1997. Since that time, much has been learned about the functional activities mediated by the corresponding proteins encoded by the SOCS genes. The SOCS gene family contains eight members: through and a highly related gene known as (cytokine-inducible SH2-containing protein).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!