The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273817 | PMC |
http://dx.doi.org/10.1093/nar/gkr834 | DOI Listing |
Microb Pathog
January 2025
Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:
Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.
View Article and Find Full Text PDFExp Parasitol
January 2025
Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia. Electronic address:
Cutaneous Leishmaniasis and Chagas disease are neglected tropical diseases that affect millions worldwide. Despite the high morbidity associated with these infections, current treatments are often highly toxic and are showing diminishing efficacy. Thus, new therapeutic options are urgently needed.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil. Electronic address:
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.
View Article and Find Full Text PDFTalanta
January 2025
Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil. Electronic address:
There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
Background/objectives: New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated.
Methods: The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!