The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility.

Mol Biol Cell

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.

Published: December 2011

Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226472PMC
http://dx.doi.org/10.1091/mbc.E11-08-0739DOI Listing

Publication Analysis

Top Keywords

dynein isoforms
12
wild-type ciliary
8
ciliary motility
8
central apparatus
8
mutants lacking
8
lacking c1d
8
dynein
6
motility
5
c1d
5
pcdp1 complex
4

Similar Publications

The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.

View Article and Find Full Text PDF
Article Synopsis
  • Macropinocytosis is a survival strategy used by cancer cells, especially in nutrient-poor environments, relying heavily on glutamine to sustain themselves, particularly in pancreatic ductal adenocarcinoma (PDAC) cells.
  • The atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating macropinocytosis by interacting with scaffold proteins that influence cell structure and function.
  • The research shows that aPKCs enhance macropinocytosis through the relocation of Par3 to microtubules, and their depletion adversely affects cell viability, which can be reversed by restoring macropinocytosis, highlighting the significance of aPKCs in supporting
View Article and Find Full Text PDF

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aβ) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before.

View Article and Find Full Text PDF

Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins.

View Article and Find Full Text PDF

Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport.

Nat Struct Mol Biol

March 2024

Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!