Occurrence, variation and behaviour of nonylphenol (NP) and octylphenol (OP) were studied in surface water and groundwater in Guiyang, Guizhou Province, southwestern China. Discharge of wastewater from Guiyang City was the main source of alkylphenols (APs) entering the aquatic environment. The concentrations of NP and OP in river water ranged from 40 to 1582 ng L(-1) and from below the lowest limit of detection (LOD) to 67 ng L(-1), respectively. NP and OP were also detected in groundwater. Both NP and OP exhibited spatial and temporal variations in river water and groundwater. It was found that concentrations of NP and OP in river water was low upstream and dramatically increased downstream, and higher concentration of NP was found in winter compared to that in summer. Proportions of NP and OP were trapped by suspended particulate matter (SPM), which accounted for 7.6-50.0% and 3.4-25.6% of their total concentration in the river water system, respectively. Seasonal changes in water flow were responsible for the temporal variations of APs. To determine the behaviour of APs along the river, a mass balance equation based on chloride was used. The results showed that a mixing process was the predominant factor to determine upstream APs concentrations; while the discharge of wastewater controlled the concentrations of APs downstream. Considering the adverse effect of APs on organisms, combined effect modeling was used to assess the toxicity to fish. It was found that the predicted mixture effect for APs in river water on fish vitellogenin induction was low upstream and medium downstream, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1em10471c | DOI Listing |
Oecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFNanoscale
January 2025
Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
Acetaminophen (AP) is a widely used analgesic and antipyretic drug, but its excessive use poses health risks and contributes to environmental contamination. In response to the need for rapid, accurate, and cost-effective detection methods, we developed a highly sensitive and selective electrochemical sensor for AP. The sensor was based on a composite of UIO-66-NH (UN) and an MXene (TiC).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.
When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria.
Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China.
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!