A theoretical analysis of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media is presented. An expression for the noise figure is obtained in terms of the spontaneous emission rate into the amplified surface plasmon-polariton taking into account the different energy decay channels experienced by dipoles in close proximity to the metallic surface. Two amplifier structures are examined: a single-interface between a metal and a gain medium and a thin metal film bounded by identical gain media on both sides. A realistic configuration is considered where the surface plasmon-polariton undergoing amplification has a Gaussian field profile in the plane of the metal and paraxial propagation along the amplifier's length. The noise figure of these plasmonic amplifiers is studied considering three prototypical gain media with different permittivities. It is shown that the noise figure exhibits a strong dependance on the real part of the permittivities of the metal and gain medium, and that its minimum value is 4/π(∼3.53 dB). The origin of this minimum value is discussed. It is also shown that amplifier configurations supporting strongly confined surface plasmon-polaritons suffer from a large noise figure, which follows from an enhanced spontaneous emission rate due to the Purcell effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.020506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!