Quantum cascade laser based standoff photoacoustic chemical detection.

Opt Express

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.

Published: October 2011

Standoff chemical detection with a distance of more than 41 feet using photoacoustic effect and quantum cascade laser (QCL) operated at relatively low power, less than 40 mW, is demonstrated for the first time. The option of using QCL provides the advantages of easy tuning and modulation besides the benefit of compact size, light weight and low power consumption. The standoff detection signal can be calibrated as a function of different parameters such as laser pulse energy, gas vapor concentration and detection distance. The results yield good agreements with theoretical model. Techniques to obtain even longer detection distance and achieve outdoor operations are in the process of implementation and their projection is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.020251DOI Listing

Publication Analysis

Top Keywords

detection distance
12
quantum cascade
8
cascade laser
8
chemical detection
8
low power
8
detection
5
laser based
4
based standoff
4
standoff photoacoustic
4
photoacoustic chemical
4

Similar Publications

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Tongue Muscle Training App for Middle-Aged and Older Adults Incorporating Flow-Based Gameplay: Design and Feasibility Pilot Study.

JMIR Serious Games

January 2025

Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913.

Background: Complications due to dysphagia are increasingly prevalent among older adults; however, the tediousness and complexity of conventional tongue rehabilitation treatments affect their willingness to rehabilitate. It is unclear whether integrating gameplay into a tongue training app is a feasible approach to rehabilitation.

Objective: Tongue training has been proven helpful for dysphagia treatment.

View Article and Find Full Text PDF

Our study focused on the potential mechanism of microRNA-490-3p (miR-490-3p) on learning/memory disability of rats resulting from sevoflurane (Sev). The rat model of cognitive dysfunction was established by infection with miR-490-3p mimic and Sev-exposure. Morris water maze and open field test assay were used for the assessment of cognitive deficits.

View Article and Find Full Text PDF

The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!