Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis.

Opt Express

NTT Access Network Service Systems Laboratories, NTT, 1-7-1, Hanabatake, Tsukuba, Ibaraki 305-0805, Japan.

Published: October 2011

A novel method for characterizing the amplitude of a coherence function with respect to a delay between two optical waves is proposed and demonstrated by using a distributional Rayleigh speckle analysis based on C-OFDR. This technique allows us to estimate both the coherence time of the laser and that of the spectral profiles from the measured amplitude of the coherence function, if the symmetry of the spectrum can be assumed. The spectral width obtained in the experiment agrees roughly with that obtained using a delayed self-heterodyne method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.019790DOI Listing

Publication Analysis

Top Keywords

rayleigh speckle
8
speckle analysis
8
amplitude coherence
8
coherence function
8
coherence
4
coherence characterization
4
characterization narrow-linewidth
4
narrow-linewidth beam
4
beam c-ofdr
4
c-ofdr based
4

Similar Publications

Zebrafish have become an important model animal for studying the emergence of collective behavior in nature. Here, we show how to properly analyze the polarization statistics to distinguish shoal regimes. In analogy with the statistical properties of optical speckles, we show that exponential and Rayleigh distributions emerge in shoals with many fish with uncorrelated velocity directions.

View Article and Find Full Text PDF

Collimating a Gaussian beam from an uncollimated laser source has been achieved via the deployment of engineered diffusers (EDs)-also referred to as light shaping diffusers. When compared to conventional pinhole-based optical collimation systems, this method of beam collimation ensures high optical transmission efficiency at the expense of the introduction of additional speckle and a resulting reduction in spatial coherence. Despite a lower collimation quality, these ED-produced collimated beams are attractive and promising in terms of their deployment in various benchtop or tabletop systems that involve shorter beam propagation distances of up to a few meters while requiring a high optical power throughput.

View Article and Find Full Text PDF

We experimentally generate nondiffracting speckles that carry non-Markovian properties by encoding the wavefront of a monochromatic laser beam with ring-shaped non-Markovian phases. The resulting non-Markovian nondiffracting fields present a ring-shaped pattern and central dark notches, which are analyzed with an expression of the orbital angular momentum spectra of the wavefront possessing ring-shaped non-Markovian phases. Furthermore, we demonstrate that the intensity profiles of these non-Markovian nondiffracting fields exhibit stability over multiple Rayleigh ranges, and their statistical properties could be controlled with the non-Markovianity of the input phase masks.

View Article and Find Full Text PDF

Speckle with non-Rayleigh amplitude distribution has significant research value in imaging and measurement using structured illumination. However, existing speckle customizing schemes have been limited in generation speed due to the refresh rate of spatial light modulators (SLMs). In this work, we proposed a method to rapidly generate non-Rayleigh distributed speckle fields using a digital micro-mirror device (DMD).

View Article and Find Full Text PDF

Ghost imaging based on the high-order correlation of optical field has developed rapidly and has been extended to the x-ray region. However, the limited flux leads to severe image deterioration. Here, an approach of Fourier-transform ghost imaging with super-Rayleigh speckles is proposed to realize high quality ghost imaging at low photon flux level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!