In vertebrates, the nuclear pore complex (NPC), the gate for transport of macromolecules between the nucleus and the cytoplasm, consists of approximately 30 different nucleoporins (Nups). The Nup and SUMO E3-ligase Nup358/RanBP2 are the major components of the cytoplasmic filaments of the NPC. In this study, we perform a structure-function analysis of Nup358 and describe its role in nuclear import of specific proteins. In a screen for nuclear proteins that accumulate in the cytoplasm upon Nup358 depletion, we identified proteins that were able to interact with Nup358 in a receptor-independent manner. These included the importin α/β-cargo DBC-1 (deleted in breast cancer 1) and DMAP-1 (DNA methyltransferase 1 associated protein 1). Strikingly, a short N-terminal fragment of Nup358 was sufficient to promote import of DBC-1, whereas DMAP-1 required a larger portion of Nup358 for stimulated import. Neither the interaction of RanGAP with Nup358 nor its SUMO-E3 ligase activity was required for nuclear import of all tested cargos. Together, Nup358 functions as a cargo- and receptor-specific assembly platform, increasing the efficiency of nuclear import of proteins through various mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0854.2011.01302.xDOI Listing

Publication Analysis

Top Keywords

nuclear import
16
nup358
7
nuclear
6
import
6
nucleoporin nup358/ranbp2
4
nup358/ranbp2 promotes
4
promotes nuclear
4
import cargo-
4
cargo- transport
4
transport receptor-specific
4

Similar Publications

Introduction: Esophageal squamous cell carcinoma (ESCC) has one of the poorest cancer prognosis rates; there is an urgent need to develop new drug therapies and biomarkers. CD63, a tetraspanin protein and well-known exosomal marker, is implicated in cancer progression; however, the significance of CD63 expression in ESCC remains unclear. Herein, we report the significance of CD63 expression by analyzing ESCC patient samples and ESCC cell lines.

View Article and Find Full Text PDF

In our efforts to enhance sensitivity to PARP inhibitors, we identified clofarabine (CLF) as a potential therapy for drug-resistant ovarian cancer and nuclear trafficking of Cathepsin L (CTSL) as a treatment- responsive biomarker. Using PARP inhibitor-sensitive and -resistant OC cell lines, ex vivo cultures of patient-derived ovarian ascites (OVA), primary ovarian tumors, and xenografts (PDX), we found that CLF monotherapy induces nuclear CTSL (nCTSL) in CLF-responsive cells (CLF-r) and sensitizes them to PARP inhibitors olaparib and rucaparib. In CLF non-responsive cells (CLF-nr), a combination of CLF with olaparib is necessary for nCTSL trafficking and synergy.

View Article and Find Full Text PDF

Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions.

View Article and Find Full Text PDF

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair.

Microorganisms

January 2025

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.

Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!