A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. | LitMetric

Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.

Biomacromolecules

Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Published: November 2011

Wood cellulose nanofibril films with sodium carboxylate groups prepared from a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized pulp exhibited an extremely low oxygen permeability of 0.0008 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity (RH). Positron annihilation lifetime spectroscopy (PALS) was used to determine the pore sizes in wood and tunicate TEMPO-oxidized cellulose nanofibril (TOCN-COONa) films in a vacuum (i.e., at 0% RH). PALS analysis revealed that the pore size of the wood TOCN-COONa films remained nearly at 0.47 nm from the film surface to the interior of the film. This is probably the cause of this high oxygen-barrier properties at 0% RH. The crystalline structure of TOCN-COONa also contributes to the high oxygen-barrier properties of the wood TOCN-COONa films. However, the oxygen permeability of the wood TOCN-COONa films increased to 0.17 mL μm m(-2) day(-1) kPa(-1) at 50% RH, which is one of the shortcomings of hydrophilic TOCN-COONa films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm201079nDOI Listing

Publication Analysis

Top Keywords

tocn-coona films
20
cellulose nanofibril
12
wood tocn-coona
12
pore size
8
tempo-oxidized cellulose
8
nanofibril films
8
positron annihilation
8
annihilation lifetime
8
lifetime spectroscopy
8
oxygen permeability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!