A highly stereoselective and efficient method for the synthesis of optically active homoallylamines was developed. Key features of the method include (1) the utilization of naphthylethylamine as both an excellent chiral auxiliary and the amine source, (2) the 1,3-chiral induction of the N-acyliminium ion with high stereoselectivity and high yield, and (3) facile auxiliary removal under mild conditions to liberate N-Cbz-protected homoallylamines. In addition, the total synthesis of the proposed novel tripeptide containing a β-amino acid has been achieved by applying this method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol202573sDOI Listing

Publication Analysis

Top Keywords

expedient synthesis
4
synthesis chiral
4
chiral homoallylamines
4
homoallylamines no-acetal
4
no-acetal tms
4
tms ethers
4
ethers application
4
application highly
4
highly stereoselective
4
stereoselective efficient
4

Similar Publications

Lewis acid-catalyzed [2π+2σ] cycloaddition of dihydropyridines with bicyclobutanes.

Chem Commun (Camb)

January 2025

Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany.

Herein we report a simple BF-catalyzed cycloaddition of dihydropyridines with bicyclobutanes for the expedient synthesis of novel three-dimensional azacycle-fused bicyclo[2.1.1]hexane scaffolds.

View Article and Find Full Text PDF

The unprecedent gold-catalyzed intermolecular 1,2-difunctionalization of nitriles with aryl iodides via Au(I)/Au(III) redox catalysis has been developed, providing an expedient route to the synthesis of benzoxazoles and benzimidazoles with broad substrate scope and high functional compatibility. Mechanistic investigation reveals that the Au(III)-Ar species generated via oxidative addition of o-iodophenol to MeDalphosAu+, serves as a key intermediate. Particularly and this annulation is initiated by oxidative addition, rather than the nucleophilic attack of the phenol moiety in o-iodophenol towards the nitrile.

View Article and Find Full Text PDF

A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols.

Nat Commun

January 2025

The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.

Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.

View Article and Find Full Text PDF

Domino cascade reactions, which can construct multiple bonds in one pot, are efficient methods to synthesize N-heterocycles and other useful skeletons. Herein, we report an expedient synthesis of polysubstituted benzo[][1,5]naphthyridine via Mn(III)-mediated C-C bond cleavage of cyclopropanols. These reactions were initiated by addition of β-carbonyl radicals, generated from cyclopropyl alcohols in the presence of Mn(III), to 2-(2-isocyanophenyl)acetonitriles to give quinolin-3-amines, which went through intramolecular cyclizations and dehydrogenation to give the final products.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method using TMSOTf to create spiroketal derivatives through hydroalkoxylation and cycloaddition reactions involving hydroxy cyclopropenes and aldehydes.
  • This process generates a donor-acceptor cyclopropane intermediate, allowing for the efficient synthesis of [5.5]- and [6.5]-spiroketals.
  • The resulting spirocyclic compounds can be further modified to produce complex polycyclic heterocycles through metal halogen exchange and copper-catalyzed reactions, with a decarboxylation step that introduces a fourth chiral center.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!