Graph based spatial position mapping of low-grade gliomas.

Med Image Comput Comput Assist Interv

Laboratoire MAS, Ecole Centrale Paris, Chatenay Malabry, France.

Published: November 2011

Low-grade gliomas (WHO grade II) are diffusively infiltrative brain tumors arising from glial cells. Spatial classification that is usually based on cerebral lobes lacks accuracy and is far from being able to provide some pattern or statistical interpretation of their appearance. In this paper, we propose a novel approach to understand and infer position of low-grade gliomas using a graphical model. The problem is formulated as a graph topology optimization problem. Graph nodes correspond to extracted tumors and graph connections to the spatial and content dependencies among them. The task of spatial position mapping is then expressed as an unsupervised clustering problem, where cluster centers correspond to centers with position appearance prior, and cluster samples to nodes with strong statistical dependencies on their position with respect to the cluster center. Promising results using leave-one-out cross-validation outperform conventional dimensionality reduction methods and seem to coincide with conclusions drawn in physiological studies regarding the expected tumor spatial distributions and interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-23629-7_62DOI Listing

Publication Analysis

Top Keywords

low-grade gliomas
12
spatial position
8
position mapping
8
spatial
5
position
5
graph
4
graph based
4
based spatial
4
mapping low-grade
4
gliomas low-grade
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!