Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since the human immunodeficiency virus (HIV) was discovered as the etiological agent of acquired immunodeficiency syndrome (AIDS), it has encouraged much research into antiviral compounds. The reverse transcriptase (RT) of HIV has been a main target for antiviral drugs. However, all drugs developed so far inhibit the polymerase function of the enzyme, while none of the approved antiviral agents inhibit specifically the necessary ribonuclease H (RNase H) function of RT. This review provides a background on structure-function relationships of HIV-1 RNase H, as well as an outline of current attempts to develop novel, potent chemotherapeutics against a difficult drug target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185654 | PMC |
http://dx.doi.org/10.3390/v2040900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!