The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves as the messenger for both core and P proteins, with the downstream P gene translated by ribosomal leaky scanning. HBV replication begins with packaging of the pgRNA and P protein into core protein particles, followed by conversion of RNA into DNA. Genotype G has a low replication capacity due to a low pgRNA level. It has a 36-nucleotide (nt) insertion in the 5' end of the core gene, adding 12 residues to the core protein. The insertion is needed to maintain efficient core protein expression and genome replication but causes inefficient virion secretion yet high maturity of virion DNA. In the present study, we confirmed that the 36-nt insertion had similar effects on core protein expression and virion secretion when it was introduced into genotype A and D clones but no impact on virion genome maturity. Surprisingly, the insertion impaired genome replication in both genotypes. Transcomplementation assays suggest that increased efficiency of core protein translation diminishes ribosomal scanning toward the downstream P gene. Indeed, mutating the core gene Kozak sequence restored core protein to lower levels but increased replication of the insertion mutant. Similar mutations impaired replication in genotype G. On the other hand, replacement of the core promoter sequence of genotype G with genotype A sequence increased pgRNA transcription and genome replication, implicating this region in the low replication capacity of genotype G. Why the 36-nt insertion is present in genotype G but absent in other genotypes is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233120PMC
http://dx.doi.org/10.1128/JVI.05583-11DOI Listing

Publication Analysis

Top Keywords

core protein
24
genome replication
12
core
10
genotype
8
36-nucleotide insertion
8
hepatitis virus
8
downstream gene
8
replication
8
low replication
8
replication capacity
8

Similar Publications

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein-coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review.

Bone Res

January 2025

Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

The transcriptional response of cortical neurons to concussion reveals divergent fates after injury.

Nat Commun

January 2025

Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!