A general approach, based on heterogeneous nucleation and growth of CdSe nanostructures on Au or Ag nanocrystals, for the synthesis of Au-CdSe and Ag-CdSe hybrid nanostructures is developed. The new approach provides a versatile one-pot route for the synthesis of hybrid nanoflowers consisting of a gold or silver core and multipod CdSe rods or an intact CdSe shell with controlled thickness, depending on the nucleation and growth parameters. At lower growth temperatures such as 150 °C, the CdSe clusters are adsorbed on the surface of the metal cores in their surface defects, then multiple arms and branches form, resulting in nanoflower-shaped hybrid structures. Increasing the size of the metal core through the choice of the reducing and capping agents results in an improvement of the interface between the metal and CdSe domains, producing core-shell structures. The growth temperature appears to be the most important factor determining the nature of the interface between the metal and CdSe domains. At relatively high temperatures such as 300 °C, the formation of large, faceted Au cores creates preferential growth sites for the CdSe nanocrystalline shell, thus resulting in well-defined Au-CdSe core-shell structures with large interfaces between the Au and CdSe domains. The present approach is expected to foster systematic studies of the electronic structures and optical properties of the metal-semiconductor hybrid materials for potential applications in photovoltaic and nanoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201100688 | DOI Listing |
J Chem Phys
January 2025
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nucleation and growth are studied in a system that undergoes diffusion-controlled condensation under gradual changes in parameters, such as cooling. It is demonstrated that when the Gibbs-Thompson effect becomes negligible, the system falls into a universal regime. i.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!