Unlabelled: Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver by way of hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that coexpression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant up-regulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT-injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet by way of mTORC1-independent mechanisms. The biological effects of coactivation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2, and c-Myc signaling cascades in mediating AKT and N-Ras-induced liver tumor development.
Conclusion: Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269553 | PMC |
http://dx.doi.org/10.1002/hep.24736 | DOI Listing |
Biomolecules
September 2024
Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.
Rhabdomyosarcoma (RMS), the most common form of sarcoma typical of pediatric age, arises from the malignant transformation of the mesenchymal precursors that fail to differentiate into skeletal muscle cells. Here, we investigated whether the protein phospholipase C δ4 (PLCδ4), a member of the PLC family involved in proliferation and senescence mechanisms of mesenchymal stromal stem cells, may play a role in RMS. Our molecular and morpho-functional data reveal that PLCδ4 is highly expressed in the fusion-negative, p53-positive, SMARCB1 heterozygous mutated embryonal RMS (ERMS) cell line A204, while it is poorly expressed in the ERMS cell lines RD (fusion-negative, MYC amplification, N-RAS (Q61H), homozygous mutated p53) and Hs729 (homozygous mutated p53) and the alveolar rhabdosarcoma (ARMS) cell line SJCRH30 (RH30; fusion positive, heterozygous mutated RARA, polyheterozygous mutated p53).
View Article and Find Full Text PDFJ Adv Res
August 2024
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China. Electronic address:
Introduction: Owing to the limited treatment options for hepatocellular carcinoma (HCC), interventions targeting pre-HCC stages have attracted increasing attention. In the pre-HCC stage, hepatic tumor-initiating cells (hTICs) proliferate abnormally and contribute to hepatocarcinogenesis. Numerous studies have investigated targeted senescence induction as an HCC intervention.
View Article and Find Full Text PDFCell Commun Signal
January 2024
Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany.
K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3.
View Article and Find Full Text PDFCell Death Dis
January 2024
State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
Hepatocarcinogenesis is a multi-step process. However, the regulators of hepatocellular carcinoma (HCC) initiation are understudied. Adult liver-specific gene expression was globally downregulated in HCC.
View Article and Find Full Text PDFCell Death Discov
November 2023
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, China.
S-palmitoylation is a reversible protein lipidation that controls the subcellular localization and function of targeted proteins, including oncogenes such as N-RAS. The depalmitoylation enzyme family ABHD17s can remove the S-palmitoylation from N-RAS to facilitate cancer development. We previously showed that ABHD17C has oncogenic roles in hepatocellular carcinoma (HCC) cells, and its mRNA stability is controlled by miR-145-5p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!