Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil.

Environ Toxicol Chem

Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.

Published: January 2012

Nanometer-sized titanium dioxide (nano-TiO(2) ) is found in a number of commercial products; however, its effects on soil biota are largely unknown. In the present study, earthworms (Eisenia andrei and Eisenia fetida) were exposed to three types of commercially available, uncoated TiO(2) nanomaterials with nominal diameters of 5, 10, and 21 nm. Nanomaterials were characterized for particle size, agglomeration, surface charge, chemical composition, and purity. Standard lethality, reproduction, and avoidance tests, as well as a juvenile growth test, were conducted in artificial soil or field soil amended with nano-TiO(2) by two methods, liquid dispersion and dry powder mixing. All studies included a micrometer-sized TiO(2) control. Exposure to field and artificial soil containing between 200 and 10,000 mg nano-TiO(2) per kilogram of dry soil (mg/kg) had no significant effect (p > 0.05) on juvenile survival and growth, adult earthworm survival, cocoon production, cocoon viability, or total number of juveniles hatched from these cocoons. However, earthworms avoided artificial soils amended with nano-TiO(2) . The lowest concentration at which avoidance was observed was between 1,000 and 5,000 mg nano-TiO(2) per kilogram of soil, depending on the TiO(2) nanomaterial applied. Furthermore, earthworms differentiated between soils amended with 10,000 mg/kg nano-TiO(2) and micrometer-sized TiO(2) . A positive relationship between earthworm avoidance and TiO(2) specific surface area was observed, but the relationship between avoidance and primary particle size was not determined because of the agglomeration and aggregation of nano-TiO(2) materials. Biological mechanisms that may explain earthworm avoidance of nano-TiO(2) are discussed. Results of the present study indicate that earthworms can detect nano-TiO(2) in soil, although exposure has no apparent effect on survival or standard reproductive parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.714DOI Listing

Publication Analysis

Top Keywords

nano-tio2
9
titanium dioxide
8
soil
8
particle size
8
artificial soil
8
amended nano-tio2
8
micrometer-sized tio2
8
nano-tio2 kilogram
8
soils amended
8
earthworm avoidance
8

Similar Publications

Laboratory-simulated marine heatwave enhances physiological damage to mussels exposed to titanium dioxide nanoparticles by disrupting the gut-hepatopancreas axis.

J Hazard Mater

December 2024

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The aggregation state of nano-TiO in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Unraveling the mystery: effect of trapped air on platelet adhesion on hydrophobic nanostructured titanium dioxide.

Biomater Sci

January 2025

Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.

Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.

Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.

View Article and Find Full Text PDF

Aim: This study aims to enhance the scannability of Type III alpha gypsum by incorporating an opacifier and to evaluate its effect on the LSE property.

Setting And Design: In vitro - Comparative study.

Materials And Methods: The base powder of Type III alpha gypsum was divided into three groups: Group I (100 g of base powder), Group II (90 g of base powder with 10 g of TiO2), and Group III (80 g of base powder with 20 g of TiO2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!