We present a simple method of water-in-oil droplet synchronization in a railroad-like channel network. The network consisted of a top channel, a bottom channel, and ladder-like channels interconnected between the two main channels. The presence of the pressure difference between the top and bottom channels resulted in the crossflow of carrier oil through the ladder network until the pressure in each channel was balanced automatically. The proposed model and method proved the feasibility of the parallel synchronization of two trains of droplets with up to 95% synchronization efficiency. Physical parameters that could improve the efficiency were investigated with the systematic variation of the droplet length and droplet generation frequency by controlling the flow rate in each channel. Under a subtle difference in the generation frequency, an unmatched droplet sandwiched between two matched droplets in the ladder network was switched and synchronized in turn. For perfect one-to-one droplet synchronization, the droplet length and the droplet generation frequency needed to be the same for both the top and bottom channels. In addition, one-to-multiple droplet synchronization was demonstrated by matching the product of the droplet length and the droplet generation frequency for both the top and bottom channels. The proposed method provides a simple unit operation for parallel synchronization of the trains of droplets that can be easily integrated with the conventional continuous-flow droplet-based microfluidic platform.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1lc20690gDOI Listing

Publication Analysis

Top Keywords

generation frequency
16
parallel synchronization
12
synchronization trains
12
trains droplets
12
droplet synchronization
12
top bottom
12
bottom channels
12
droplet length
12
length droplet
12
droplet generation
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!