A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generative probabilistic models extend the scope of inferential structure determination. | LitMetric

Generative probabilistic models extend the scope of inferential structure determination.

J Magn Reson

Bioinformatics Center, University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.

Published: December 2011

Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretically rigorous approach was developed which treats structure determination as a problem of Bayesian inference. In this case, the forcefields are brought in as a prior distribution in the form of a Boltzmann factor. Due to high computational cost, the approach has been only sparsely applied in practice. Here, we demonstrate that the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for the use of sophisticated probabilistic models of biomolecular structure in structure determination from experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2011.08.039DOI Listing

Publication Analysis

Top Keywords

structure determination
16
probabilistic models
12
experimental data
12
generative probabilistic
8
physical forcefields
8
structure
5
determination
5
models extend
4
extend scope
4
scope inferential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!