AI Article Synopsis

  • Multisite phosphorylation can turn a gradual signal from protein kinases into a sharp "on/off" reaction.
  • In the study of yeast (Saccharomyces cerevisiae), the start of S phase in the cell cycle involves specific phosphorylation events that lead to the degradation of the Sic1 inhibitor by Cdk1 and cyclins.
  • This research reveals that Sic1's destruction relies on complex multiphosphorylation cascades driven by both Cln2-Cdk1 and Clb5-Cdk1, which require precise docking interactions to generate positive feedback, thus enhancing our understanding of cell cycle regulation.

Article Abstract

Multisite phosphorylation of proteins has been proposed to transform a graded protein kinase signal into an ultrasensitive switch-like response. Although many multiphosphorylated targets have been identified, the dynamics and sequence of individual phosphorylation events within the multisite phosphorylation process have never been thoroughly studied. In Saccharomyces cerevisiae, the initiation of S phase is thought to be governed by complexes of Cdk1 and Cln cyclins that phosphorylate six or more sites on the Clb5-Cdk1 inhibitor Sic1, directing it to SCF-mediated destruction. The resulting Sic1-free Clb5-Cdk1 complex triggers S phase. Here, we demonstrate that Sic1 destruction depends on a more complex process in which both Cln2-Cdk1 and Clb5-Cdk1 act in processive multiphosphorylation cascades leading to the phosphorylation of a small number of specific phosphodegrons. The routes of these phosphorylation cascades are shaped by precisely oriented docking interactions mediated by cyclin-specific docking motifs in Sic1 and by Cks1, the phospho-adaptor subunit of Cdk1. Our results indicate that Clb5-Cdk1-dependent phosphorylation generates positive feedback that is required for switch-like Sic1 destruction. Our evidence for a docking network within clusters of phosphorylation sites uncovers a new level of complexity in Cdk1-dependent regulation of cell cycle transitions, and has general implications for the regulation of cellular processes by multisite phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228899PMC
http://dx.doi.org/10.1038/nature10560DOI Listing

Publication Analysis

Top Keywords

multisite phosphorylation
16
sic1 destruction
12
phosphorylation
9
sic1
5
cascades multisite
4
phosphorylation control
4
control sic1
4
destruction
4
destruction onset
4
onset phase
4

Similar Publications

Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology.

View Article and Find Full Text PDF

A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems.

Nat Microbiol

December 2024

Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.

DNA degradation (Dnd) is a widespread bacterial antiphage defence system that relies on DNA phosphorothioate (PT) modification for self/non-self discrimination and subsequent degradation of unmodified DNA. Phages employ counterstrategies to evade host immunity, but anti-Dnd immunity has not been characterized. Here we report an immune evasion protein encoded by the Salmonella phage JSS1 that contributes to subverting Dnd and other defence systems.

View Article and Find Full Text PDF

The parameter region of multistationarity of a reaction network contains all the parameters for which the associated dynamical system exhibits multiple steady states. Describing this region is challenging and remains an active area of research. In this paper, we concentrate on two biologically relevant families of reaction networks that model multisite phosphorylation and dephosphorylation of a substrate at n sites.

View Article and Find Full Text PDF

Background: Fragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome.

View Article and Find Full Text PDF

Asp/ASPM phospho-regulation throughout the cell cycle.

Genome

October 2024

Department of Biology, Mount St. Vincent University, Halifax, NS B3M 2J6, Canada.

In mammals and , Asp/ASPM proteins contribute to cell proliferation and spindle formation. Recent evidence also suggests interphase roles for Asp/ASPM proteins, but little is known about the regulation allowing distinct roles in different cell cycle phases. In this review, we consider a cross-species comparison of Asp/ASPM protein sequences in light of cyclin-CDK literature, and suggest Asp/ASPM proteins to be prime candidates for cyclin-CDK regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!