The present study investigated whether there is an interaction between reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK) during chemical hypoxia-induced injury in PC12 cells. The results of the present study showed that cobalt chloride (CoCl₂), a chemical hypoxia agent, markedly induced ROS generation and phosphorylation of p38MAPK, as well as neuronal injuries. N-acetylcysteine (NAC), a ROS scavenger, blocked CoCl₂-induced phosphorylation of p38MAPK. In addition, SB203580, an inhibitor of p38MAPK attenuated not only CoCl₂-induced activation of p38MAPK, but also ROS production. These results suggest that ROS and p38MAPK are capable of interacting positively during chemical hypoxia. Furthermore, NAC and SB203580 markedly prevented CoCl₂-induced cytotoxicity, apoptosis and a loss of mitochondrial membrane potential. Taken together, our findings suggest that the positive interaction between CoCl₂ induction of ROS and p38MAPK activation may play a significant role in CoCl₂-induced neuronal injuries. We provide new insights into the mechanisms responsible for CoCl₂-induced injuries in PC12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2011.623DOI Listing

Publication Analysis

Top Keywords

ros p38mapk
12
pc12 cells
12
chemical hypoxia-induced
8
injuries pc12
8
cells study
8
chemical hypoxia
8
phosphorylation p38mapk
8
neuronal injuries
8
p38mapk
7
ros
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!