Objective: To assess the efficacy of deferasirox as an iron chelator, with specific reference to reducing cardiac iron overload.

Design: Prospective, open label, single arm study between 2008-2010. SETUP: Thalassemia center at a teaching hospital.

Participants: 30 multitransfused Thalassemia Major (TM) patients receiving deferasirox (DFX) therapy.

Methods: All patients had MRI T2*evaluation for cardiac iron load before starting DFX therapy. MRI T2* was performed on a 1.5 tesla Siemens sonata machine using thalassemia tools software and the ejection fraction measured using standard cardiac magnetic resonance sequence. Quantification of cardiac iron deposit was categorized into T2* <10 ms as high cardiac risk, 10-20 ms as intermediate risk, and >20 ms as low risk. We also estimated left ventricular ejection fraction (LVEF), end systolic volume (ESV) and end diastolic volume (EDV) using standard sequence. EF <56 % was considered to be significant cardiac dysfunction. DFX was administered in an initial dose of 20mg/kg/day and increased to a maximum of 35mg/kg/day. Serum ferritin level was estimated in pretransfusion samples at 1-3 monthly intervals. The primary end point of the study was change in serum ferritin level and cardiac MRI T2* value after 12-18 months therapy.

Results: Of the 30 patients, cardiac iron value of >20 ms was seen in 15 (50%), whereas 9 (30%; ) had 20-10 ms, and 6 (20%) had <10 ms. The mean serum ferritin pre DFX therapy of all cases was 3859.8 ± 1690.70 ng/mL (1066 - 6725 ng/mL) and mean cardiac T2* was 23.8 ± 15.2 ms (6.24-69.2 ms). After 12 to 18 months of DFX therapy on a mean dose of 33 mg/kg/day, the mean serum ferritin was 2693.4 ± 1831.5 ng/mL (drop by 30.2%, P<0.001) and mean cardiac T2* was 24.2 ± 12.9 ms (increase of 1.6 %, P=0.87). Percentage change in cardiac iron was greater in high risk (24.8%) and intermediate risk (33.4%) patients than low risk patients (8.4%), though these values were not statistically significant. LVEF was 62.0 (± 7.0%) before treatment and changed to 58.9 (± 4.8%) after 18 months of therapy but the values remained within normal range and this change was not significant (P=0.061). Adverse effect of DFX included diarrhea, maculopapular skin rash and transient proteinuria that necessitated temporary stoppage of medication.

Conclusion: Deferasirox monotherapy has a good safety profile and effectively chelates total body iron. It is also a good myocardial iron chelator, more efficacious in moderate to severe cardiac iron overloaded patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13312-012-0042-4DOI Listing

Publication Analysis

Top Keywords

cardiac iron
16
ejection fraction
8
cardiac
5
iron
5
efficacy safety
4
safety deferasirox
4
deferasirox reducing
4
reducing total
4
total body
4
body cardiac
4

Similar Publications

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

Iron deficiency (ID) often coexists with heart failure (HF), and its prevalence increases with the severity of HF. Intravenous ferric carboxymaltose (FCM) has been associated with improvements in clinical outcomes, functional capacity, and quality of life (QoL) in patients with HF and ID. However, while earlier studies showed favorable results, more recent studies have failed to demonstrate significant improvements in outcomes for patients with heart failure with reduced ejection fraction (HFrEF) and ID.

View Article and Find Full Text PDF

Introduction: Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia.

View Article and Find Full Text PDF

Aims: Iron deficiency (ID) is highly prevalent in patients with heart failure (HF) and associated with morbidity and poor prognosis, but pathophysiological mechanisms are unknown. We aimed to identify novel biological pathways affected by ID.

Methods And Results: We studied 881 patients with HF from the BIOSTAT-CHF cohort.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!