Simulation approach to coincidence summing in γ-ray spectrometry.

Appl Radiat Isot

Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2, France.

Published: July 2012

Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain γ-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2011.09.014DOI Listing

Publication Analysis

Top Keywords

simulation approach
4
approach coincidence
4
coincidence summing
4
summing γ-ray
4
γ-ray spectrometry
4
spectrometry radionuclides
4
radionuclides efficiency
4
efficiency calibration
4
calibration hpge
4
hpge spectrometer
4

Similar Publications

Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE.

View Article and Find Full Text PDF

This paper investigates the impact of varying humidity conditions on the carbonation depth in hardened cement paste using a 3-dimensional microscale kinetic Monte Carlo (kMC) approach. The kMC algorithm effectively simulates the carbonation process by capturing the interplay between CO diffusion and relative humidity at the microscale, providing insights into macro trends that align with historical models. The study reveals that the maximum carbonation depth is achieved at relative humidity levels between 55 and 65%, where the balance between water and CO diffusion is optimized.

View Article and Find Full Text PDF

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups.

View Article and Find Full Text PDF

The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!