Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration.

J Environ Sci Health A Tox Hazard Subst Environ Eng

ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Water Resource Management Laboratory, Bologna, Italy.

Published: January 2012

This study evaluated the treatability of textile wastewaters in a bench-scale experimental system, comprising an anaerobic biofilter, an anoxic reactor and an aerobic membrane bioreactor (MBR). The MBR effluent was thereafter treated by a nanofiltration (NF) membrane. The proposed system was demonstrated to be effective in the treatment of the textile wastewater under the operating conditions applied in the study. The MBR system achieved a good COD (90-95%) removal; due to the presence of the anaerobic biofilter, also effective color removal was obtained (70%). The addition of the NF membrane allowed the further improvement in COD (50-80%), color (70-90%) and salt removal (60-70% as conductivity). In particular the NF treatment allowed the almost complete removal of the residual color and a reduction of the conductivity such as to achieve water quality suitable for reuse.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10978526.2011.609078DOI Listing

Publication Analysis

Top Keywords

textile wastewater
8
membrane bioreactor
8
anaerobic biofilter
8
wastewater treatment
4
treatment bench-scale
4
bench-scale anaerobic-biofilm
4
anaerobic-biofilm anoxic-aerobic
4
membrane
4
anoxic-aerobic membrane
4
bioreactor combined
4

Similar Publications

The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance.

View Article and Find Full Text PDF

Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

Front Fungal Biol

December 2024

Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.

The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.

View Article and Find Full Text PDF

Natural indigo toxicity for aquatic and terrestrial organisms.

Ecotoxicol Environ Saf

December 2024

Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil.

Indigo is a widely used colorant available from natural and synthetic origin. It is practically insoluble in water. Indigo can reach aquatic sediments through wastewater discharges from dyeing processes, terrestrial compartments from the treatment sludges used as biosolids and dyed textiles disposed in landfills.

View Article and Find Full Text PDF

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!