Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acid-catalyzed dehydrations of substituted naphthalene-cis-1,2-dihydrodiols occur with loss of the 1- or 2-OH group to form 2- and 1-naphthols, respectively. Effects of substituents MeO, Me, H, F, Br, I, and CN at 3-, 6-, and 7-positions of the naphthalene ring are consistent with rate-determining formation of β-hydroxynaphthalenium ion (carbocation) intermediates. For reaction of the 1-hydroxyl group the 3-substituents are correlated by the Yukawa-Tsuno relationship with ρ = -4.7 and r = 0.25 or by σ(p) constants with ρ = -4.25; for reaction of the 2-hydroxyl group the 3-substituents are correlated by σ(m) constants with ρ = -8.1. The correlations for the 1-hydroxyl imply a surprisingly weak resonance interaction of +M substituents (MeO, Me) with a carbocation reaction center but are consistent with the corresponding correlation for acid-catalyzed dehydration of 3-substituted benzene-cis-1,2-dihydrodiols for which ρ = -6.9 and r = 0.43. Substituents at the 6- and 7-positions of the naphthalene rings by contrast are correlated by σ(+) with ρ = -3.2 for reaction of the 1-hydroxyl group and ρ = -2.7 for reaction of the 2-hydroxyl group. The unimpaired resonance implied by these substituent effects appears to be inconsistent with a previous explanation of the weak resonance of the 3-substituents in terms of imbalance of charge development and/or nonplanarity of the benzenium ring in the transition state. An alternative possibility is that the adjacent hydroxyl group interferes sterically with conjugation of +M substituents. "Hyperaromaticity" of the arenium ion intermediates does not appear to be a factor influencing this behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo201591r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!