It is shown that the convergence of anharmonic infrared spectral intensities with respect to the basis set size is much enhanced in explicitly correlated calculations as compared to traditional configuration interaction type wave function expansion. Explicitly correlated coupled cluster (CC) calculations using Slater-type geminal correlation factor (CC-F12) yield well-converged dipole derivatives and vibrational intensities for hydrogen fluoride with basis set involving f functions on the heavy atom. Combination of CC-F12 with singles, doubles, and non-iterative triples (CCSD(T)-F12) with small corrections due to quadruple excitations, core-electron correlation, and relativistic effects yields vibrational line positions, dipole moments, and transition dipole matrix elements in good agreement with the best experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3647566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!