We previously reported that a secreted glycoprotein YKL-40 acts as an angiogenic factor to promote breast cancer angiogenesis. However, its functional role in normal mammary gland development is poorly understood. Here we investigated its biophysiological activity in mammary epithelial development and mammary tissue morphogenesis. YKL-40 was expressed exclusively by ductal epithelial cells of parous and non-parous mammary tissue, but was dramatically up-regulated at the beginning of involution. To mimic ductal development and explore activity of elevated YKL-40 during mammary tissue regression in vivo, we grew a mammary epithelial cell line 76N MECs in a 3-D Matrigel system in the presence of lactogenic hormones including prolactin, hydrocortisone, and insulin. Treatment of 76N MECs with recombinant YKL-40 significantly inhibited acinar formation, luminal polarization, and secretion. YKL-40 also suppressed expression of E-cadherin but increased MMP-9 and cell motility, the crucial mechanisms that mediate mammary tissue remodeling during involution. In addition, engineering of 76N MECs with YKL-40 gene to express ectopic YKL-40 recapitulated the same activities as recombinant YKL-40 in the inhibition of cell differentiation. These results suggest that YKL-40-mediated inhibition of cell differentiation and polarization in the presence of lactogenic hormones may represent its important function during mammary tissue involution. Identification of this biophysiological property will enhance our understanding of its pathologic role in the later stage of breast cancer that is developed from poorly differentiated and highly invasive cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185048PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025819PLOS

Publication Analysis

Top Keywords

mammary tissue
24
mammary epithelial
12
cell differentiation
12
lactogenic hormones
12
76n mecs
12
mammary
10
ykl-40
9
ykl-40 mammary
8
epithelial cell
8
differentiation polarization
8

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Tumour DNA methylation markers associated with breast cancer survival: a replication study.

Breast Cancer Res

January 2025

Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.

Background: Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.

Methods: This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity).

View Article and Find Full Text PDF

Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence.

View Article and Find Full Text PDF

Intramammary dry-off treatment is widely considered an effective method for preventing and curing intramammary infection (IMI) in lactating cows; however, it is not commonly used in small ruminants like goats. Therefore, this study was designed to evaluate the effect of an approved cefazolin-based intramammary treatment on the milk microbiota of Alpine dairy goats during the dry and early lactation periods. Sixty goats were randomly selected based on bacteriological results and randomly allocated into the control group (CG) or the treatment group (TG).

View Article and Find Full Text PDF

To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!